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Abstract  

Many systems are designed to help novices who want to learn programming, but few support those who are not 

necessarily interested in learning programming. This paper targets the subset of end-user programmers (EUPs) in this 

category. We present a set of principles on how to help EUPs like this learn just a little when they need to overcome a 

barrier. We then instantiate the principles in a prototype and empirically investigate them in three studies: a formative 

think-aloud study, a pair of summer camps attended by 42 teens, and a third summer camp study featuring a different 

environment attended by 48 teens. Finally, we present a generalized architecture to facilitate the inclusion of Idea 

Gardens into other systems, illustrating with examples from Idea Garden prototypes. Results have been very encour-

aging.  For example, under our principles, Study #2’s camp participants required significantly less in-person help than 

in a previous camp to learn the same amount of material in the same amount of time.  

1. INTRODUCTION 

 End-user programmers (EUPs) are defined in the literature as people who do some form of programming with 

the goal of achieving something other than programming itself [Nardi 1993, Ko et al. 2011]. In this paper, we consid-

er one portion of the spectrum of EUPs—those who are definitely not interested in learning programming per se, but 

are willing to do and learn just enough programming to get their tasks done.  

We can describe these kinds of EUPs as being “indifferent” to learning programming (abbreviated “indifferent 

EUPs”), a subset of Minimalist Learning Theory’s notion of “active users” [Carroll and Rosson 1987]. Minimalist 

Learning Theory’s active users are those who are just interested in performing some kind of task—such as getting a 

budget correct or scripting a tedious web-based task so that they do not have to do it manually—not in learning about 

the tool they are using and its features. According to the theory, active users such as our indifferent EUPs are willing 

to learn and do programming only if they expect it to help them complete their task. 

We would like to help indifferent EUPs in the following situation: they have started a task that involves pro-
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gramming and then have gotten “stuck” partway through the process. As we detail in the next section, EUPs in these 

situations have been largely overlooked in the literature. 

We have been working toward filling this gap through an approach called the Idea Garden [Cao et al. 2011, Cao 

et al. 2012, Cao et al. 2013, Cao et al. 2015]. Our previous work has described the Idea Garden and its roots in Mini-

malist Learning Theory. In essence, the Idea Garden exists to entice indifferent EUPs who are stuck to learn just 

enough to help themselves become unstuck. Building upon prior studies that showed that early versions of the Idea 

Garden helped indifferent EUPs become unstuck [Cao et al. 2012, Cao et al. 2013, Cao et al. 2015], this paper inves-

tigates exactly why the Idea Garden helped them and how the underlying principles and structure of the Idea Garden 

contributed to that success. 

Toward that end, this paper’s first research contribution lies in asking a principled “why?”: Why is the Idea Gar-

den helpful to indifferent EUPs, and what are the essential characteristics of systems like the Idea Garden? To answer 

this question, we present seven principles upon which (we hypothesize) the Idea Garden’s effectiveness rests, and 

instantiate them in both an Idea Garden prototype that sits on top of the Gidget EUP environment [Lee 2015] and an-

other prototype that extends the Cloud9 IDE environment [Loksa et al. 2016]. We then empirically investigate in 

three studies, principle by principle, the following research question: How do these principles influence the ways in-

different EUPs can solve the programming problems that get them “stuck”?  

Our second contribution is generalization of the Idea Garden.  Prior work on the Idea Garden [Cao et al. 2012, 

Cao et al. 2013, Cao et al. 2015] was in a single language environment (CoScripter). In this work, we use the new 

principles of the first contribution to build Idea Gardens in two additional languages and environments: Gidget, with 

its own imperative language, and Cloud9, with JavaScript. We also present a generalized architecture for the Idea 

Garden to enable others to instantiate Idea Garden systems and its principles in their own programming environments. 

This paper presents the architecture itself, how it was used to create multiple Idea Gardens, the motivations behind 

pieces of the architecture, and how it enables the seven Idea Garden principles. We illustrate with examples from the 

Gidget and Cloud9 Idea Garden prototypes.  

2. BACKGROUND AND RELATED WORK 

One of the most relevant foundational bases for the Idea Garden’s target population is Minimalist Learning Theo-

ry (MLT) [Carroll and Rosson 1987, Carroll 1990]. MLT was designed to provide guidance on how to teach users 

who (mostly) do not want to be taught. More specifically, MLT’s users are motivated by getting the task-at-hand ac-

complished. Thus, they are often unwilling to invest “extra” time to take tutorials, read documentation, or use other 

training materials—even if such an investment would save them time in the long term. This phenomenon is termed 

the “paradox of the active user” [Carroll and Rosson 1987]. MLT aims to help those who face this paradox to learn—

despite their indifference to learning. 

Prior work has explored many ways of helping programmers by increasing access to information that may help a 

programmer find a solution to a problem. For example, systems have created stronger links to formal documentation 

(e.g., [Subramanian et al. 2014]), used social question and answer sites to fill gaps in documentation (e.g., [Mamykina 

et al. 2011]), or brought relevant content from the web into the programming environment (e.g., [Brandt et al. 2010]). 
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Unlike these systems, which try to bring correct information to programmers, the Idea Garden does not try to give 

users complete or even entirely correct answers; rather, it tries to give users information about similar problems that 

may help them identify new approaches to solving their own problem.  

 Another class of prior work aims to explicitly teach problem-solving rather than informally suggest problem-

solving strategies (as the Idea Garden does). For example, intelligent tutoring systems have long been studied in do-

mains such as mathematics, physics, statistics, and even writing, finding that by breaking down problems into proce-

dural steps, teaching these steps, and providing feedback when learners deviate from these steps, computer-based tu-

tors can be as effective as human tutors [VanLehn 2011, Kulik & Fletcher 2015]. Most of this work has not investi-

gated the teaching of programming problem-solving, although there are some exceptions. The LISP tutor built models 

of the program solution space and monitored learners’ traversals through this space, intervening with corrective feed-

back if learners encountered error states or made mistakes the tutor had previously observed [Anderson et al. 1989]. 

Other more recent efforts to teach problem-solving to programmers have found that having teachers prompt novices 

about the strategies they are using and whether those strategies are appropriate and effective can greatly improve nov-

ices’ abilities to problem-solve independently [Loksa et al. 2016]. The Idea Garden also tries to increase users’ 

awareness of their own and other possible problem-solving strategies, but as is needed in ordinary programming situa-

tions. 

 There is also research aimed specifically at populations of novice programmers who want to learn programming, 

characterized by new kinds of educational approaches or education-focused languages and tools [Dorn 2011, Guzdial 

2008, Hundhausen et al. 2009, Kelleher and Pausch 2006, Tillmann et al. 2013].  For example, Stencils [Kelleher and 

Pausch 2005] presents translucent guides with tutorials to teach programming skills. While Stencils uses overlays to 

show users the only possible interface interactions and explains them with informative sticky notes, the Idea Garden 

aims to help users figure out the interactions themselves. Also, these approaches target users who aspire to learn some 

degree of programming, whereas the Idea Garden targets those whose motivations are to do and learn only enough 

programming to complete some other task. 

EUP systems targeting novices who do not aspire to become professional programmers commonly attempt to 

simplify programming via language design. For example, the Natural Programming project promotes designing pro-

gramming languages to match users’ natural vocabulary and expressions of computation [Myers et al. 2004]. One 

language in that project, the HANDS system for children, depicts computation as a friendly dog who manipulates a 

set of cards based on graphical rules that are expressed in a language designed to match how children described 

games [Pane and Myers 2006]. Other programming environments such as Alice [Kelleher and Pausch 2006] incorpo-

rate visual languages and direct or tangible manipulation to make programming easier for EUPs. The Idea Garden 

approach is not about language design, but rather about providing conceptual and problem-solving assistance in the 

language/environment of its host.  

A related approach is to reduce or eliminate the need for explicit programming. For example, programming by 

demonstration allows EUPs to demonstrate an activity from which the system automatically generates a program 

(e.g., [Cypher et al. 2010]). Some of these types of environments (e.g., CoScripter/Koala [Little et al. 2007]) also pro-

vide a way for users to access the generated code. Another family of approaches seeks to delegate some programming 
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responsibilities to other people. For example, meta-design aims at design and implementation of systems by profes-

sional programmers such that the systems are amenable to redesign through configuration and customization by EUPs 

[Andersen and Mørch 2009, Costabile et al. 2009].  

 Another way to reduce the amount of programming needed by EUPs is to connect them with examples they can 

reuse as-is. For example, tools such as FireCrystal [Oney and Myers 2009] and Scry [Burg et al. 2015] allow pro-

grammers to select user interface elements of a webpage and view the corresponding source code that implements it. 

Other systems are designed to simplify the task of choosing which existing programs to run or reuse (e.g., [Gross et 

al. 2010]) by emulating heuristics that users themselves seem to use when looking for reusable code. 

Although the above approaches help EUPs by simplifying, eliminating, or delegating the challenges of program-

ming, none are aimed at nurturing EUPs’ problem-solving ideas. In essence, these approaches help EUPs by lowering 

barriers, whereas the Idea Garden aim to help EUPs figure out for themselves how to surmount those barriers. How-

ever, there is some work aimed at helping professional interface designers generate and develop ideas for their inter-

face designs. For example, bricolage [Kumar et al. 2011] allows designers to retarget design ideas by transferring 

designs and content between webpages, enabling multiple design ideas to be tested quickly. Another example is a 

visual language that helps web designers develop their design ideas by suggesting potentially appropriate design pat-

terns along with possible benefits and limitations of the suggested patterns [Diaz et al. 2010]. This line of work par-

tially inspired our research on helping EUPs generate new ideas in solving their programming problems. 

3. THE PRINCIPLES 

This section presents seven principles that ground the content and presentation of the Idea Garden. It also pre-

sents the works that influenced the development of each principle. 

 Most of the principles used to create the Idea Garden draw from MLT’s approach to serve active users. For ex-

ample, P1-Content provides content that relates to what the active user is already doing; P2-Relevance shapes content 

for the active user in such a way that they feel it is relevant to the task at hand, to encourage the user to pick up just 

the content they need, just in time; P3-Actionable gives active users something to do with the information they have 

just collected; and P6-Relevance provides content to users within the context in which they are working so that they 

can keep their focus on getting their task done rather than searching for solutions from external sources. 

The Idea Garden also draws foundations from the psychology of curiosity and constructivist learning. To deliver 

content to indifferent EUPs, the Idea Garden uses Surprise-Explain-Reward [Robertson et al. 2004, Wilson et al. 

2003] to carefully surprise EUPs with a curiosity-based enticement that leads to constructivist-oriented explanations. 

This strategy informed our principles P6-Availability and P7-InterruptionStyle. To encourage learning while acting, 

the Idea Garden draws from constructivist theories surveyed in [Bransford et al. 1999] to keep users active (informing 

P3-Actionable), make explanations not overly directive (P4-Personality), and motivate users to draw upon their prior 

knowledge (P1-Content and P5-InformationProcessing). Moreover, the Idea Garden encourages users to construct 

meaning from its explanations by arranging, modifying, rearranging, and repurposing concrete materials in the way 

bricoleurs do [Turkle and Papert 1990], encouraging users to act through P3-Actionable. 

Table 1 provides a complete list each of the principles’ foundations. 
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Table 1: The seven Idea Garden principles and their explanations. The middle column contains the prior 
work that helped inform each Idea Garden principle. A hyphenated name signifies a principle (e.g., P1-

Content), while a name with a dot signifies a subprinciple (e.g., P1.Concepts). 

Principle Based off work 

involving… 

Explanation 

P1-Content MLT; constructivist 

learning 

Content that makes up the hints need to contain at least 

one of the following: 

P1.Concepts  Explains a programming concept such as iteration or 

functions. Can include programming constructs as needed 

to illustrate the concept. 

P1.Mini-

patterns 

 Design mini-patterns show a usage of the concept that the 

user must adapt to their problem (minipattern should not 

solve the user’s problem). 

P1.Strategies 

 

 A problem-solving strategy such as working through the 

problem backward. 

P2-Relevance MLT; special-purpose pro-

gramming languages and 

systems 

For Idea Garden hints that are context-sensitive, the aim 

is that the user perceives them to be relevant. Thus, hints 

use one or more of these types of relevance:  

P2.MyCode  The hint includes some of the user’s code. 

P2.MyState  The hint depends on the user’s code, such as by explain-

ing a concept present in the user’s code. 

P2.MyGoal  The hint depends on the requirements the user is working 

on, such as referring to associated test cases or pre/post-

conditions. 

P3-Actionable MLT [Carroll and Rosson 

1987, Carroll 1990]; 

constructivist learning; 

bricoleurs; special-purpose 

programming languages 

and systems 

Because the Idea Garden targets MLT’s “active users,” 

hints must give them something to do [Carroll and 

Rosson 1987, Carroll 1990]. Thus, Idea Garden hints 

must imply an action that the user can take to overcome a 

barrier or get ideas on how to meet their goals: 

P3.Explictly 

Actionable 

 The hint prescribes actions that can be physically done, 

such as indenting or typing something. 

P3.Implicitly 

Actionable 

 The hint prescribes actions that are “in the head,” such as 

“compare” or “recall”. 

P4-Personality Constructivist learning; 

[Lee and Ko 2011] 

The personality and tone of Idea Garden entries must try 

to encourage constructive thinking. Toward this end, 

hints are expressed non-authoritatively and tentatively 

[Lee and Ko 2011]. For example, phrases like “try 

something like this” are intended to show that, while 

knowledgeable, the Idea Garden is not sure how to solve 

the user’s exact problem. 

P5-Information 

Processing 

Constructivist learning; 

[Meyers-Levy 1989]; 

special-purpose 

programming languages 

and systems 

Because research has shown that (statistically) females 

tend to gather information comprehensively when 

problem-solving, whereas males gather information 

selectively [Meyers-Levy 1989], the hints must support 

both styles. For example, when a hint is not small, a 

condensed version must be offered with expandable parts. 

P6-Availability MLT; Surprise-Explain-

Reward [Robertson et al. 

2004] 

Hints must be available in these ways: 

P6.Context 

Sensitive 

 Available in the context where the system deems the hint 

relevant. 

P6.ContextFree  Available in context-free form through an always-

available widget (e.g., pull-down menu). 

P7-Interruption Surprise-Explain-Reward Because research has shown the superiority of the 
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Style [Robertson et al. 2004] negotiated style of interruptions in debugging situations 

[Robertson et al. 2004], all hints must follow this style. In 

negotiated style, nothing ever pops up. Instead, a small 

indicator “decorates” the environment (like the incoming 

mail count on an email icon) to let the user know where 

the Idea Garden has relevant information. Users can then 

request to see the new information by hovering or 

clicking on the indicator. 

 

4. STUDY #1: PRINCIPLED FORMATIVE STUDY 

During the development of our first Idea Garden in the programming-by-demonstration environment CoScripter, 

we hypothesized that some of above principles were key to the Idea Garden’s success, but did not formally use them 

as a guide to implementation [Cao et al. 2015]. Therefore, as part of the process of generalizing with a second version 

of the Idea Garden, this time for the Gidget environment, we made explicit the above seven principles in the imple-

mentation of the system so that we could use them to construct the Idea Garden for Gidget.  

To inform this work, prior to actually implementing the Idea Garden principles in the Gidget prototype, we con-

ducted a small formative study we call Study #1. Our goal was to gather evidence about our proposed principles so 

that we could make an informed decision about which ones to focus on evaluating in a larger study we call Study #2 

(presented in Section 6).  

In the Gidget game (Figure 1), a robot named Gidget provides players with code to complete missions. Accord-

ing to the game’s backstory, Gidget was damaged and the player must help Gidget diagnose and debug the faulty 

code. Missions (game levels) introduce or reinforce different programming concepts. After players complete all 37 

levels of the “puzzle play” portion of the Gidget game, they can then move on to the “level design” portion to create 

(program) new levels of their own [Lee and Ko 2015]. 
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Figure 1: The Gidget puzzle game environment with superimposed callouts for readability. Dictionary 

entries appear in tooltips when players hover over keywords  (“for” shown here). Hovering over an idea 
indicator ( ) reveals an Idea Garden hint. 

For Study #1, we reanalyzed think-aloud data that was presented in [Lee et al. 2014]. This study had 10 partici-

pants (5 females, 5 males) who were 18-19 years old, each with little to no programming experience. Each session 

was 2 hours in length and fully video-recorded. The experimenter helped participants when they were stuck for more 

than 3 minutes. We re-analyzed the video recordings from this study using the code sets in Table 2. The objective of 

the previously reported study [Lee et al. 2014] was to investigate barriers and successes of Gidget players. Here, we 

analyze the think-aloud data from a new perspective: to inform our research into how Idea Garden principles should 

target those issues. Thus, the Idea Garden was not yet present in Gidget for Study #1. 

Although the Idea Garden was not yet present, some UI elements in Gidget were consistent with some Idea Gar-

den principles (Table 3’s left column). We leveraged these connections to obtain formative evidence about the rela-

tive importance of the proposed principles. Toward this end, we analyzed 921 barriers and 6,138 user interactions 

with interface elements. 
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Table 2: Study #1 and #2 Barrier codes and Outcome codes. 

Algorithm Design Barrier Codes [Cao et al. 2012, Lee et al. 2014] 

More than once Did not know how to generalize one set of commands for one object onto multiple objects 

Composition Did not know how to combine the functionality of existing commands 

Learning Phase Barrier Codes [Ko et al. 2004, Lee et al. 2014] 

Design Did not know what they wanted Gidget to do 

Selection Thought they knew what they wanted Gidget to do, but did not know what to use to make 

that happen 

Use Thought they knew what to use, bud did not know how to use it 

Coordination Thought they knew what things to use, but did not know how to use them together 

Understanding Thought they knew how to use something, but it did not do what they expected  

Information Thought they knew why it did not do what they expected, but did not know how to check 

Barrier Outcomes Codes 

Progress Participant overcame the barrier or partially overcame the barrier 

In-person help Participant overcame the barrier, but with some help from the experimenter 

No Progress Neither of the above 

 

Table 3: Study #1: Number of instances in which participants made progress for principles P2-Relevance 
and P6-Availability, as per the code definitions of Table 2. Maximum values are highlighted. When 
contributions of a principle to a barrier were much smaller than to the other barriers, we refer to that 

barrier(s) in the last column as “minor”. 

Principle  

(example UI elements) 

Participants’ progress Which barriers 

  +
*
 + -  

P2-Relevance 
P2.MyState   

(e.g., Error messages)  

2128 

44% 

1378 

28% 

1368 

28% 

(Minor contribution to most) 

P2.MyGoal 

(e.g., Mission/level goals) 

767 

42% 

571 

31% 

487 

27% 

Design 

(& minor to most) 

P6-Availability 

P6.Context-Sensitive Avail. (e.g., 

Tooltips over code)  

1691 

44% 

1151 

29% 

1034 

27% 

Coord., Compos., Selection (& minor 

to most) 

P6.Context-Free Avail. 

(e.g., Dictionary)  

823 

36% 

845 

37% 

594 

26% 

(Minor to Design) 

  

*
 

 

+: 

+: 

-: 

 

progress with no in-person help 

progress with help from experimenter 

no progress 
 

The Gidget UI elements’ connections to Idea Garden principles primarily related to P2-Relevance and P6-

Availability. Table 3 shows that when these principles were present, participants tended to make progress—usually 

without needing any help from the experimenter. 

However, as Table 3 also shows, each principle helped with different barriers (defined in Table 2). For example, 

P2.MyGoal stood out in helping participants with Design barriers (i.e. did not know what they wanted Gidget to do). 

On the other hand, P6.ContextSensitive was strong with Coordination (knew what concepts to use, but not how to use 

them together), Composition (did not know how to combine functionalities of existing commands), and Selection 

(knew what they wanted Gidget to do, but not what to use to get that to happen) barriers. 

These results revealed three useful insights for Study #2’s principled evaluation and implementation of the Idea 

Garden prototype within Gidget: (1) We decided to evaluate our principles using a barrier-centric perspective based 
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on our findings of complementary roles of different principles for different sections in “barrier space.” (2) We de-

signed several hints (described in Section 5) so that relevant ones would appear in context for the appropriate anti-

patterns based on our promising results for P2-Relevance and P6.ContextSensitive. (3) We concentrated on creating 

hints for the concepts (P1.Concepts) that participants struggled with the most, since these were the ones users were 

most likely to encounter. 

5. THE PRINCIPLES CONCRETELY: THE IDEA GARDEN FOR GIDGET 

The Idea Garden works with a host EUP environment, and this paper shows the Idea Garden in two different 

hosts: Gidget, which we used in Study #2 (Figure 1), and the Cloud9 browser-based IDE, which we used in Study #3 

(Section 7). We begin with the Gidget-hosted Idea Garden prototype, to concretely illustrate ways in which the Idea 

Garden principles can be instantiated. 

5.1 The Idea Garden Prototype for Gidget 

 Gidget has been used successfully by a wide range of age groups [Lee and Ko 2011, Lee and Ko 2012, Lee et al. 

2014]. Indifferent EUPs are among the game’s players: some users want to learn just enough programming to beat a 

level and no more. This makes the environment an ideal candidate for the Idea Garden. 

The Idea Garden prototype for Gidget aims to help players who are unable to make progress even after they have 

used the host’s existing forms of assistance. Before we added the Idea Garden to the game, Gidget had three built-in 

kinds of help: a tutorial slideshow, automatic highlighting of syntax errors, and an in-line reference manual (called a 

“dictionary” in Gidget) available through a menu and through tooltips over code keywords. The Idea Garden supple-

ments these kinds of help by instantiating the seven principles as follows (illustrated in Figure 2).  

 

Figure 2: Hovering over a  shows a hint. The superimposed P’s show how each of the 7 principles are 
instianted in this hint. 

P1-Content: The content that users struggle with is presented in this prototype and derived from Study #1. The 

Concept portion is in the middle of Figure 2 (i.e., the concept of iteration), the Mini-pattern is shown via the code 

example, and the Strategy portion is the numbered set of steps at the bottom. 

P2-Relevance: Prior empirical studies [Cao et al. 2012] showed that if Idea Garden users did not immediately see 



10 

 

 

 

the relevance of a hint to their situation, they would ignore it. Thus, to help Gidget users quickly assess a hint’s rele-

vance, the hint first says what goal the hint is targeting (the “gist” of the hint), and then includes some of the user’s 

own code and/or variable names (Figure 2), fulfilling P2.MyCode and P2.MyState. The anti-patterns, explained in the 

next subsection, are what make these inclusions viable. 

P3-Actionable, P4-Personality, and P5-InformationProcessing: Every hint suggests action(s) for the user to take. 

For example, in Figure 2, the hint gives numbered actions (P3). However, whether the hint is the right suggestion for 

the user’s particular situation is still phrased tentatively (P4). Since hints can be relatively long, they are initially col-

lapsed but can be expanded to see everything at once, supporting players with both comprehensive and selective in-

formation processing styles (P5). 

P6-Availability and P7-InterruptionStyle: Hints never interrupt the user directly; instead, a hint’s availability in 

context (P6.ContextSensitive) is indicated by a small green  beside the user’s code (Figure 2, P7) or within one of 

Gidget’s tooltips (Figure 1). The user can hover to see the hint, and can also “pin” a hint so that it stays on the screen. 

Context-free versions of all the hints are always available (P6.ContextFree) via the “Dictionary” button at the top 

right of Figure 1. 

5.2 Anti-pattern support for the principles 

Idea Garden’s support for several of the principles comes from its detection of mini-anti-patterns in the user’s 

code. Anti-patterns, a notion similar to “code smells,” are implementation patterns that suggest some kind of concep-

tual, problem-solving, or strategy difficulty. The prototype detects these anti-patterns as soon as a player introduces 

one. 

Our prototype detects several anti-patterns that imply conceptual programming problems (as opposed to syntacti-

cal errors). When selecting which ones to support in this prototype, we chose anti-patterns that occurred in prior em-

pirical data about Gidget at least three times (i.e., by at least three separate users). The following is a description of 

each programming anti-pattern and the conceptual issue behind them:  

(1) no-iterator: not using an iterator variable within the body of a loop. Users usually thought that loops would 

interact with every object in a for loop’s list when using a reference to a single object instead of the iterator variable. 

(2) all-at-once: trying to perform the same action on every element of the set/list all at once instead of iterating 

over the list. Users thought that functions built to work with objects as parameters would take lists as arguments. 

(3) function definition without call: Users sometimes believed that the definition of a function would run once ex-

ecution reached the function keyword; they did not realize they had to call the function. 

(4) function call without definition: calling an undefined function. Sometimes, users did not realize that some 

function calls referred to definitions that they could not see (since they were defined in Gidget’s world code). They 

would try to call other functions that had no definition whatsoever. 

(5) instantiating an undefined object: instantiating an undefined object. Similar to (4), objects could be defined in 

the world code and created in Gidget’s code. Some users thought they could create other objects they had seen in past 

levels despite the fact they were not defined in the current level. 

Detecting anti-patterns enables support for three of the Idea Garden principles. The anti-patterns define context 

(for P6.ContextSensitive), enabling the system to both derive and show a hint within the context of the problem and to 
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decorate the screen with the  symbol (P7-Interruption Style). For P2-Relevance, the hint communicates relevance 

(to the user’s current problem) by generating itself based on the player’s current code as they type it; this includes 

using players’ own variable names within the hints. Figure 2, which is the hint constructed in response to the no-

iterator anti-pattern, illustrates these points.  Figure 3 shows additional examples of hints constructed in response to 

the above anti-patterns.  

  

 

Figure 3: Idea Garden hints in Gidget for (left) the two function anti-patterns and (right) for the all-at-once 
anti-pattern. 

6. STUDY #2: THE PRINCIPLES GO TO CAMP 

Using the prototype discussed in the previous section, we conducted Study #2 (a summative study) to evaluate 

the usefulness of the Idea Garden principles to indifferent EUP teens. Our overall research question was: How do the 

principles influence the ways indifferent EUPs can solve the programming problems that get them “stuck”? 

6.1 Study #2 Methods 

We conducted Study #2 as a (primarily) qualitative study, via two summer camps for teenagers playing the Gidg-

et debugging game. The teens used the Idea Garden whenever they got stuck with the Gidget game. The two summer 

camps took place on college campuses in Oregon and Washington. Each camp ran 3 hours per day for 5 days, for 15 

hours total. Participants used desktop computers to play the game. Campers spent 5 hours each in: Gidget puzzle play; 

in other activities such as icebreakers, guest speakers, and breaks; and in level design. 

We recruited 34 teens aged 13-17. The Oregon camp had 7 males and 11 females; all 16 teens in the Washington 

camp were females. Both camps’ median ages were 15 years. The participants were paired into same-gender teams of 

similar age (with only one male/female pair) and were instructed to follow pair programming practices, with the 

“driver” and “navigator” switching places after every game level. One participant in the Washington camp opted out 

of our data collection for privacy reasons, so her team was excluded from analyses. 

Recall that the Gidget game is intended for two audiences: those who want to learn programming and our popula-

tion of indifferent EUPs. Since the Idea Garden targets the latter audience, we aimed to recruit camp participants with 
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little interest in programming itself by inviting them to a “problem-solving” camp (without implying that the camp 

would teach programming).   

The teens we attracted did seem to be largely made up of the “indifferent EUP” audience we sought. We inter-

viewed the outreach director who spoke with most parents and kids of Study #2’s Oregon camp, which targeted 

schools in economically-depressed rural towns, providing scholarships and transportation. She explained that a large 

percentage of campers came in spite of the computing aspect, not because of it: the primary draw for them was that 

they could come to the university, free of cost, with transportation provided. Consistent with this, in a survey of a 

2013 camp recruited the same way, 25 of the 34 teens (74%) self-reported low confidence using computers and/or did 

not see themselves pursuing computing careers. 

The same researchers ran both camps: a lead (male graduate student) led the activities and kept the camp on 

schedule; a researcher (female professor), and four helpers (one male graduate student, three female undergraduates) 

answered questions and approached struggling participants. We provided no formal instruction about Gidget or pro-

gramming. The Gidget system recorded logs of user actions, including code versions, Idea Garden s, hint interac-

tion, and code execution. The helpers observed and recorded instances when the campers had problems, noting if 

teams asked for help, what the problem was, what steps they tried prior to asking for help, and what (if any) assistance 

was given, and if the provided assistance (if any) resolved the issue. 

We coded the 407 helper observations in three phases using the same code set as for Study #1: we first deter-

mined if a barrier occurred, then which types of barriers occurred, and finally what their outcomes were (Table 2). 

Two coders reached 85%, 90%, and 85% agreement (Jaccard Index), respectively, on 20% of the data during each 

phase, and then split up the rest of the coding. We then added in each additional log instance (not observed by a help-

er) in which a team viewed an anti-pattern-triggered Idea Garden hint marked by a . We considered these 39 in-

stances evidence of “self-proclaimed” barriers, except if they were viewed by a team within 2 minutes of a visit from 

a camp helper (who may have pointed them to the hint). If teams somehow removed the fault, we coded the instance 

in two phases: for the barriers in Table 2 and the same barrier endings as for the observations. Two coders reached 

80% and 93% agreement on 20% of the data sets respectively, and one coder finished the remaining data. Finally, for 

purposes of analysis, we removed all Idea Garden instances in which the helper staff also gave assistance (except 

where explicitly stated otherwise), since we cannot know in such instances whether progress was due to the helpers or 

to the Idea Garden. 

We merged these sets of barriers with the Idea Garden hints that were involved in each and considered the prin-

ciples involved in each hint. The results of this coding and analysis are presented next. 

6.2 Study #2 Results 

 This section discusses what Study #2 revealed about the principles of the Idea Garden. We did not explicitly in-

vestigate principles P4-Personality and P7-InterruptionStyle in Study #2, since each was investigated in prior work. 

However, both were found to be beneficial to EUPs in different ways: P4-Personality contributed to programming 

successes by helping users of an early Gidget game complete significantly more levels in the same amount of time 

than users without such a “personable” system [Lee and Ko 2011]; and P7-InterruptionStyle’s negotiated interruptions 

were shown to help EUPs debug programs more effectively [Robertson et al. 2004]. 
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Teams did not always need the Idea Garden; they solved 53 of their problems just by discussing them with each 

other, reading the reference manual, etc. However, when these measures did not suffice, they turned to the Idea Gar-

den for more assistance 149 times (bottom right, Table 4). Doing so enabled them to problem-solve their way past 77 

of these 149 barriers (52%) without any guidance from the helper staff (Table 5). 

In fact, as Table 5 shows, when the Idea Garden hint or  was on the screen, teams seldom needed in-person 

help: only 25 times (out of 149+25) = 14%. Finally, the teams’ barrier success rate with in-person help alone (59%) 

was only slightly higher than with the Idea Garden alone (52%).  

Table 4: Percents of barrier instances in which progress occurred, categorized by barrier type, when Idea 
Garden principles P2, P3, and/or P6 were present. (P1, P5 not shown because all aspects were always 
present.) The total column (right) adds in the small numbers of Design, Composition, and Information 

barrier instances not detailed in other columns. Highlights point out cells discussed in the text.  
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MyCode 
8/20 

(40%) 

13/21 

(62%) 

1/1 

(100%) 

1/2 

(50%) 

12/24 

(50%) 

35/69 

(51%) 

MyState 
9/24 

(38%) 

28/54 

(52%) 

12/18 

(67%) 

2/4 

(50%) 

12/25 

(48%) 

64/128 

(50%) 

P
3

- 

A
ct

io
n

ab
le

 

Explicitly 

Actionable 

9/24 

(38%) 

28/54 

(52%) 

13/19 

(68%) 

2/4 

(50%) 

12/25 

(48%) 

66/130 

(51%) 

Implicitly 

Actionable 

10/23 

(43%) 

17/28 

(61%) 

1/1 

(100%) 

3/5 

(60%) 

14/29 

(48%) 

45/87 

(52%) 

P
6

- 

A
v

ai
la

b
le

 

Context 

Sensitive 

6/19 

(32%) 

22/37 

(59%) 

10/14 

(71%) 

1/3 

(33%) 

9/21 

(43%) 

48/95 

(51%) 

Context  

Free 

2/5 

(40%) 

5/7 

(71%) 

2/2 

(100%) 

1/1 

(100%) 

2/5 

(40%) 

12/21 

(57%) 

 Total (unique 

instances) 

11/27 

(41%) 

33/62 

(53%) 

13/19 

(68%) 

4/7 

(57%) 

14/30 

(47%) 

77/149 

(52%) 
 

 

Table 5: Barrier instances and teams’ progress with/without getting in-person help. Teams did not usually 
need in-person help when an Idea Garden hint and/or anti-pattern-triggered  was on the screen (top 

row). Maximums in each row are highlighted. (The 25 instances where teams did not make progress are 
not included in this table.) 

IG  

On-screen? 

Progress without  

in-person help 

Progress if team got  

in-person help 

Yes (149+25 instances) 77/149 (52%) 25 

No (155 instances) 53 91/155 (59%) 

 

Table 4 also breaks out the teams’ success rates principle by principle (rows). Campers overcame 50% or more of 

their barriers when each of the reviewed principles was involved, showing they each made a contribution to campers’ 

success. No particular difference in success rates with one principle versus another stands out in isolation, likely due 

to the fact that the prototype uses most of them most of the time. However, viewing the table column-wise yields two 
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particularly interesting barriers.  

First, Selection barriers (where the camper knows what they want to do, but not what to use to do it; first column) 

were the most resistant to the principles. This surfaces a gap in the current Idea Garden version: A Selection barrier 

happens before use as the user tries to decide what to use, whereas the Idea Garden usually became active after a 

camper attempted to use some construct in code.  

Second, Coordination barriers (where the camper knows what things to use, but not how to use them together; 

third column) showed the highest progress rate consistently for all of the Idea Garden principles. We hypothesize that 

this relatively high success rate may be attributable to P1’s mini-patterns (present in every hint), which show explicit-

ly how to incorporate and coordinate combinations of program elements. For example, in Figure 2, the Gidget itera-

tion hint, the mini-pattern code example shows how to use iteration together with Gidget’s goto keyword. This kind of 

concrete example, combined with the other subprinciples of P1 (specifically P1.Concepts and P1.Strategies, investi-

gated more deeply in [Cao et al. 2011] and [Cao et al. 2012], and also Study #3 in this paper) may have contributed to 

campers’ high success rates when overcoming coordination barriers. 

Study #2 revealed a good deal of information about the principles and how campers could leverage them to help 

themselves progress through their problems. In Table 6, we list some of the results from Study #2.  

Table 6: A summary of what Study #2 revealed about each of the principles.  

Principle Results from Study #2 

P1-Content  Coordination barriers showed the highest progress rates for all of the Idea Garden 

principles, but its success may be particularly due to P1’s mini-patterns, which 

explicitly show how to coordinate combinations of program elements 

P2-Relevance  When campers picked up on the relevance of hints, they made progress the 

majority of the time. Still, it can be tricky to convey relevance to indifferent EUPs 

 Hints should also attempt to convey solution relevance, not just problem relevance 

P3-Actionable  Explicitly actionable hints gave campers a single new action recipe to try  

 Implicity actionable hints gave campers options on ways to generate multiple new 

action recipies on their own 

 Hints helped campers apply new knowledge and analyze differences in action 

recipes, i.e., helped them at multiple stages of Bloom’s taxonomy  

P4-Personality N/A (already investigated in [Lee and Ko 2011]) 

P5-Information 

Processing 
 Females tended to use comprehensive processing, whereas males tended to use 

selective processing (consistent with [Burnett et al. 2011, Grigoreanu et al. 2012, 

Meyers-Levy 1989]) 

 Since the Idea Garden supports both information processing styles, campers were 

able to use whichever fit their problem-solving style, contributing to a more 

inclusive environment 

P6-Availability  Campers accessed context-sensitive hints about 5x more than context-free hints 

 But campers sometimes revisted the context-free hints later, after the context had 

changed, to get a reminder of the hint’s suggestions 

P7-InterruptionStyle N/A (already investigated in [Robertson et al. 2004]) 

 

 Taken together, these results suggest that the principles of the Idea Garden can contribute to indifferent EUPs’ 

successes across many diverse use cases and situations. P2-Relevance and P6-Availability worked together in a num-
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ber of ways to provide campers with relevant hints that could be accessed in or out of context, supporting a wide vari-

ety of problem-solving styles. The complimentary roles of P3.ExplicitlyActionable and P3.ImplicitlyActionable 

helped campers either apply or analyze their knowledge at different stages in Bloom’s taxonomy, leading to progress 

on problems. Finally, P5-InformationProcessing allowed teams to gather information in whichever way fit their prob-

lem to them, promoting gender-inclusiveness by supporting different information processing styles. Below, we illus-

trate some examples that show the many ways campers used these principles. 

6.2.1 Teams’ Behaviors with P2-Relevance and P6-Availability 

In this section, we narrow our focus to observations of team’s reactions to the  in relation to P2 and P6. We 

consider P2 and P6 together because the prototype supported P2-Relevance in a context-sensitive (P6) manner. 

Teams appeared to be enticed by the context-sensitive hints. As the P6-Availability row in Table 4 shows, teams 

accessed context-sensitive hints about five times as often as the context-free hints. Still, in some situations, teams 

accessed the context-free hints to revisit them out of context. Despite more context-sensitive accesses, the progress 

rates for both were similar. Therefore, these findings support the use of both context-sensitive and context-free avail-

ability of the Idea Garden hints. 

Table 7: Observed outcomes of responses to the . Teams made progress when they read a hint and 
acted on it (row 1, col 1), but never if they ignored what they read (row 2, col 1). (P2-Relevance’s 

mechanisms are active only within a hint.) 

Response Type Principles Progress% 

Read hint and 

then… 

...acted on it P2+P6 25/42 60% 

...ignored it P2+P6 0/4 0% 

Didn’t read hint P6 6/15  40% 

Deleted code marked by  P6 4/19  21% 

To-do listing P6 3/4 75% 

 

Table 7 enumerates the five ways teams responded to the context-sensitive s (i.e., those triggered by the mini-

anti-patterns). The first way was the “ideal” way that we had envisioned: reading and then acting on what they read. 

Teams responded in this way in about half of our observations, making progress 60% of the time. For example: 

Team Turtle (Observation #8-A-2): 
Observation notes: Navigator pointed at screen, prompting the driver to open the Idea Garden  on 
function. … they still didn't call the function. 
Action notes: ... After reading, she said "Oh!" and said "I think I get it now..." Changed function decla-
ration from "/piglet/:getpiglet" to "function getpiglet()".  The  popped up again since they weren't call-
ing it, so they added a call after rereading the IG and completed the level. 

However, a second response to the  was when teams read the hint but did not act on it. For example: 

Team Beaver (Observation #24-T-8): 
Observation notes: ... "Gidget doesn't know what a sapling is", "Gidget's stupid". Looked at Idea Gar-
den hint. ... "It didn't really give us anything useful" … 

This example helps illustrate a nuance of P2-Relevance. Previous research has reported challenges in convincing 

users of relevance [Cao et al. 2012]. In this example the team may have believed the hint was relevant to the problem, 

but not to a solution direction. This suggests that designing according to P2-Relevance should target solution rele-

vance, not just problem relevance. 
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Third, some teams responded to the  by not reading the hint at all. This helped a little in that it identified a 

problematic area for them, and they made progress fairly often (40%), but not as often as when they read the hint.  

Fourth, some teams deleted code marked by the . They may have viewed the  as an error indicator and did 

not see the need to read why (perhaps they thought they already knew why). Teams rarely made progress this way 

(21%).  

Fifth, teams used ’s as “to-do” list items. For example, Team Mouse, when asked about the  in the code in 

Figure 4, said “we’re getting there”. Using the  as something to come back to later is an example of the “to-do list-

ing” strategy, which has been a very successful problem-solving device for EUPs if the strategy is explicitly support-

ed [Grigoreanu et al. 2010]. Many of the observations involving this technique did not include any indications of the 

teams being stuck. 

 

Figure 4: (1) Team Mouse spent time working on code above the s. When (2) a helper asked them 
about the s in their code, they indicated (3) that the s were action items to do later. Seven other teams 

also used this method. 

 In summary, campers used a variety of interaction styles when confronted with an Idea Garden  icon. When 

campers picked up on the relevance (P2) of the hint in their current context (P6), they often made progress (e.g., Team 

Turtle’s “read-and-act-upon” approach to the icon). Although it can be tricky to convey the relevance of hints to indif-

ferent EUPs, guiding campers toward a solution direction helps convey that relevance and get EUPs unstuck. 

6.2.2 Teams’ Behaviors with P3-Actionable 

The two types of actionability that P3 includes, namely P3.ExplicitlyActionable (step-by-step actions as per Fig-

ure 2’s P3) and P3.ImplicitlyActionable (mental, e.g. “refer back...”) instructions, helped the teams in different ways.  

Explicitly actionable hints seemed to give teams new (prescriptive) action recipes. For example, Team Rabbit 

was trying to write and use a function. The hint’s explicitly actionable instructions revealed to them the steps they had 

omitted, which was the insight they needed to make their code work: 

Team Rabbit (Observation #9-T-3) 
Observation notes: They wrote a function... but do not call it.  
Action notes: Pointed them to the  next to the function definition. They looked at the steps... then 
said, "Oh, but we didn't call it!" 

Explicitly actionable instructions helped them again later, in writing their very first event handler (using the 

“when” statement). They succeeded simply by following the explicitly actionable instructions from the Idea Garden: 
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Team Rabbit (Observation #10-T-1) 
Observation notes: They wanted to make the key object visible when[ever] Gidget asked the dragon 
for help. They used the Idea Garden hint for when to write a when statement inside the key object defi-
nition:  
   when /gidget/:sayThis = "Dragon, help!" ... 
The when statement was correct. 

In contrast to explicitly actionable instructions, implicitly actionable instructions appear to have given teams new 

options to consider. In the following example, Team Owl ran out of ideas to try and did not know how to proceed. 

However, after viewing an Idea Garden hint, they started to experiment with new and different ideas with lists until 

they succeeded: 

Team Owl (Observation #11-A-7): 
Observation notes: They couldn't get Gidget to go to the [right] whale. They had written “right down 
grab first /whale/s.” 
Action notes: Had them look at the Idea Garden hint about lists to see how to access individual ele-
ments ... Through [experimenting], they found that their desired whale was the last whale. 

The key difference appears to be that the explicitly actionable successes came from giving teams a single new 

recipe to try themselves (Team Rabbit’s observation #10, above) or to use as a checklist (Team Rabbit’s observation 

#9, above). This behavior relates to the Bloom’s taxonomy ability to apply learned material in new, concrete situa-

tions [Anderson et al. 2001], where a person executes an idea (trying to use events). In contrast, the implicitly action-

able successes came from giving them ways to generate new recipe(s) of their own from component parts of learned 

material (Team Owl’s example), as in Bloom’s “analyze” stage [Anderson et al. 2001], where a person differentiates 

or organizes based on a certain idea (which whale to use). 

6.2.3 Teams’ Behaviors with P5-InformationProcessing 

Recall that P5-InformationProcessing states that hints should support EUPs’ information processing styles, 

whether comprehensive (process everything first) or selective (process only a little information before acting, find 

more later if needed). The prototype did so by condensing long hints into brief steps for selective EUPs, which could 

optionally be expanded for more detail for comprehensive EUPs. We also structured each hint the same way so that 

selective EUPs could immediately spot the type of information they wanted first. 

Some teams, including Team Monkey and Team Rabbit, followed a comprehensive information processing style: 

Team Monkey (Observation #27-S-6) 
Observation notes: <Participant name> used the [IG hint] a LOT for step-by-step and read it to un-
derstand. 
 
Team Rabbit (Observation #8-W-4) 
Observation notes: They were reading the IG for functions, with the tooltip expanded. After closing it, 
they said "Oh you can reuse functions. That's pretty cool."  

Many of the teams who preferred this style, including the two above, were female. Their use of the comprehen-

sive style is consistent with prior findings that females often use this style [Burnett et al. 2011, Grigoreanu et al. 2012, 

Meyers-Levy 1989]. As the same past research suggests, the four teams with males (but also at least one of the female 

teams) used the selective style.  

Unfortunately, teams who followed the selective style seemed hindered by it. One male team, Team Frog, exem-

plifies a pattern we saw several times with this style: they were a bit too selective, and consistently selected very small 
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portions of information from the hints, even with a helper trying to get them to consider additional pertinent infor-

mation: 

Team Frog (Observation #24-W-12 and #24-W-14): 
Observation Notes: … Pointed out  and even pointed to code, but they quickly selected one line of 
code in the IG help and tried it. ... They chose not to read information until I pointed to each line to read 
and read it… 

In essence, the prototype’s support for both information processing styles fit the teams’ various working styles. 

6.3 How Much Did They Learn? 

After about 5 hours of debugging their way through the Gidget levels, teams reached the “level design” phase, 

where they were able to freely create their own levels. In contrast to the puzzle play activity where teams only fixed 

broken code to fulfill game goals, this “level design” portion of the camp required teams to author level goals, “world 

code,” behavior of objects, and the starting code others would debug to pass the level. Figure 4 shows part of one such 

level.  

 

Figure 5: Team Tiger’s “River Dam” level with functions, conditionals, and loops. 

The teams created between 1 to 12 levels each (median: 6.5). As Figure 5 helps illustrate, the more complex the 

level a team devised, the more programming concepts the team needed to use to implement it. Among the concepts 

teams used were variables, conditionals (“if” statements), loops (“for” or “while”), functions, and events (“when” 

statements).  

The teams’ uses of events were particularly telling. Although teams had seen Idea Garden hints for loops and 

functions throughout the puzzle play portion of the game, they had never even seen event handlers. Even so, all 9 

teams who asked helpers how to make event-driven objects were immediately referred to the Idea Garden hint that 
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explained it, and all eventually got it working with little or no help from the helpers. 

The number of programming concepts a team chose to incorporate into their own levels can be used as a con-

servative measure of how many such concepts they really learned by the end of the camp. This measure is especially 

useful here, because the same data are available from the Gidget camps the year before, in which in-person help was 

the main form of assistance available to the campers [Lee et al. 2014] (Table 8). 

Table 8: Percentage of teams using each programming concept during level design, for Study #2 versus 
Gidget camps held the year before. Note that the average is nearly the same. 

Study Bool Var. Cond. Loops Func. Event Avg. 

Study #2 camps 100% 88% 25% 63% 44% 56% 63% 

[Lee et al. 2014] camps 100% 94% 35% 47% 41% 76% 66% 

 

As Table 8 shows, the teams from the two years learned about the same number of concepts on average. Thus, 

the amount of in-person help from the prior year [Lee et al. 2014] that we replaced by the Idea Garden’s automated 

help resulted in almost the same amount of learning. 

As to how much in-person help was actually available, we do not have identical measures, but we can make a 

conservative comparison (biased against Idea Garden). We give full credit to Idea Garden the second year only if no 

in-person help was involved, but give full credit to the Idea Garden the first year if one of our early Idea Garden 

sketches was used to supplement in-person helpers that year. Although this bias makes the Idea Garden improvement 

look lower than it should, it is the closest basis of comparison possible given slight differences in data collection. 

This comparison is shown in Table 9. As the two tables together show, Study #2’s teams learned about the same 

number of concepts as with the previous year’s camps (Table 8), with significantly less need for in-person help (Table 

9, Fisher’s exact test, p=.0001). 

Table 9: Instances of barriers and percentage of total barriers teams worked through with and without in-
person help, this year under the principles described here, vs. last year. (Comparison biased against Idea 

Garden; see text.) 

Study Used in-person help No in-person help 

Second year’s camps, Study #2 with Idea 

Garden: Barriers with progress 

116  

47% 

130 

53% 

First year’s camps [Lee et al. 2014]: 

Barriers (progress not available) 

437  

89% 

56 

11% 

7. STUDY #3: THE PRINCIPLES IN CLOUD9 

To generalize our results so far, we chose a new host environment for our next Idea Garden prototype, namely 

Cloud9 [Cloud9 2016].  As a web-based IDE, Cloud9 is a professional development environment, so this prototype of 

the Idea Garden needed to accommodate a much less restricted environment than Gidget.  

Our target audience remained indifferent EUPs.  Similarly to Gidget, in which some users want to learn just 

enough programming to beat a level, in Cloud9 some users want to learn just enough programming to personalize 

their website. We used the Cloud9 Idea Garden for two purposes in Study #3: both to evaluate the principles’ general-

izability to a different IDE and language, and to investigate the principles’ generalizability to explicitly support prob-
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lem-solving strategies (not just conceptual errors as in the Gidget-based prototype).  

7.1 The Idea Garden in Cloud9 

As with the Gidget prototype, the seven principles informed the design and implementation of the Cloud9 proto-

type. Within those boundaries, we tailored the Idea Garden implementation to its Cloud9 host in several ways. 

 First, we housed Cloud9’s 14 Idea Garden hints under headers in a side panel of the IDE, instead of tooltips. As 

in Gidget, if Cloud9 users triggered a programming anti-pattern when writing code, a  decorated the screen next to 

the problematic code (Figure 6) to support P6.ContextSensitive and P7-InterruptionStyle. Users could then click on 

the icon to have the Idea Garden highlight the titles of relevant hints in the side panel. For example, if a user wrote a 

for loop that contained a no-iterator anti-pattern (such as the one in Figure 6), clicking the icon would highlight the 

title of the Iteration with For hint.  

The appearances and structures of the hints were similar to those in Study #2’s Idea Garden, in support of princi-

ples P1-Content, P3-Actionable, P4-Personality, and P5-InformationProcessing; Figure 7 illustrates. (See [Jernigan 

2015] for a comprehensive comparison of the Idea Garden host-specific hints in Gidget vs. Cloud9.)  The Idea Garden 

panel and all of its hints were always available in the IDE, to support P6-ContextFree. 

 

 
Figure 6: An example of the Idea Garden decorating a Cloud9 user’s code with a  icon to indicate that it 

has detected an anti-pattern. Users can click on the icon to have the Idea Garden highlight the relevant 
hint. 



21 

 

 

 

 
Figure 7: The Idea Garden prototype instantiated in a side panel of the Cloud9 environment, with the 

Iteration with For hint expanded to show how different parts of the hint instantiated the principles.  

 

Because of this study’s emphasis on problem-solving strategies, some hints in Cloud9 did not have Gidget coun-

terparts. One example is the Working Backwards hint (Figure 8), which supports the Working Backwards problem-

solving strategy [Wickelgren 1974]. 
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Figure 8: The “Working Backwards” hint in the Cloud9 Idea Garden. This hint does not include a code 
example, and as such had to convey relevance through P2.MyState and P2.MyGoal, as seen in the “gist” 

of the hint (“Are you searching for solutions?”). 

As Figure 8 demonstrates, these problem-solving strategy hints did not include code examples, and this raised a 

challenge to the P2-Relevance principle: participants could not tell by looking at code (i.e., by using P2.MyCode) 

whether or not the hint was relevant. Thus, these problem-solving hints had to communicate relevance using only P2. 

MyState or P2.MyGoal. To resolve this, we designed the panel to follow the flow of the problem solving stages that 

had been explained to the campers, so that campers could determine relevance by the stage they were in, supporting 

P2.MyState. We also organized Cloud9 Idea Garden hints in the side panel so that campers could see and expand any 

hint they deemed relevant whenever the panel was open. This also supported P6.ContextFree: campers could have the 

Working Backwards hint onscreen while they wrote code and then, if they triggered an anti-pattern and opened anoth-

er hint, they could still view the Working Backwards hint at the same time.  

7.2 Study #3 Methods, Procedures, and Participants 

 After porting the Idea Garden to Cloud9, we conducted Study #3, a two-week long day camp that taught 48 nov-

ice programmers web development [Loksa et al. 2016]. Campers learned the basics of HTML, CSS, JavaScript, and a 

JavaScript library called React in order to make their own websites.  

One aim of the camp was to empirically evaluate whether explicitly teaching problem solving to novice pro-

grammers could facilitate the development of programming skills. Campers were divided into an experimental group 

(which attended the morning session) and a control group (which attended the afternoon session). Each session lasted 

3 hours, with a total of 10 sessions for each group. Both groups initially had 25 campers, but two students in the con-

trol group decided not to attend the camps, bringing the final count to 23 campers in the control group and 25 in the 

experimental group. Campers were not formally instructed to pair program or work in groups (unlike Study #2), but 

some still helped each other with programming tasks.  

Both groups were identical in terms of the instructions given, prescribed programming tasks, and levels of assis-

tance received from camp helpers. However, the experimental group received four interventions that the control group 
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did not: (1) A short lecture about problem solving and metacognition in programming; (2) A set of prompts to be an-

swered when campers asked helpers for assistance; (3) a physical, paper handout of a problem solving model; and (4) 

the Idea Garden prototype for Cloud9. As we explained above, the Idea Garden prototype supported anti-patterns ob-

served in previous studies as well as problem-solving strategy hints consistent with interventions (1)-(3).  

 Throughout the camps, we measured the experimental group’s Idea Garden usage through a Cloud9 event log-

ging mechanism. We also collected data in both the control and experimental camps from camp helper observations 

and end-of-day surveys that campers filled out after each session, giving us multiple streams from which to triangu-

late results. These sources of data were combined with campers’ code, which their workspace pushed to private Bit-

Bucket repositories every half hour during camp sessions, giving an impression of Idea Garden usage in Cloud9. 

7.3 Study #3 Results 

Full results of this study are described in [Loksa et al. 2016]. To summarize, the campers in the experimental 

group completed more self-initiated web development tasks (i.e., tasks that were not prescribed as part of camp in-

struction) than the control group. In addition, the experimental group did not have a significant association between 

in-person help requests and productivity (Pearson: r(23)=0.278, p=0.179), whereas the control group did have a sig-

nificant association between the two (Pearson: r(21)=0.467, p=0.025). This suggests that the control group’s produc-

tivity was significantly tied to help requests, whereas the experimental group was productive even without significant 

in-person help. 

In this paper, we focus on what Study #3 revealed about the Idea Garden’s principles and how well they general-

ized to Study 3’s environment and goals. However, because the Idea Garden in Study #3 was a single element in a set 

of interventions, we cannot isolate its exact quantitative contributions to the results in [Loksa et al. 2016]. We can, 

however, provide qualitative examples of the ways in which campers interacted with the Idea Garden though a princi-

pled lens and look for consistency or inconsistency between these examples with Study #2’s findings.  

7.3.1 Example: Successes with P1-Content, P3-Actionable, and P6.ContextFree 

First, we consider a semi-ideal example, in which the Idea Garden was very helpful to highly productive campers 

who focused on JavaScript-related tasks. The top example of this type was a 12
th

 grade male (“Bob”), who completed 

the second highest number of programming tasks of all the campers. Bob interacted frequently with the Idea Garden, 

reading and acting upon suggestions from the hints on iteration during day 3 of the two-week camp. Bob explicitly 

wrote about his use of the Idea Garden on day 5, when he said in his end-of-day survey that the Idea Garden “told me 

to try using a map function or a for-in loop and im [sic] trying to get them to work”— and on day 6, helpers’ observa-

tion forms showed him successfully using iteration without further help. 

 Bob’s Idea Garden usage parallels that of Study #2 teams who read a hint and then acted upon its suggestions – 

the “ideal” way we envision indifferent EUPs using the Idea Garden (e.g., Study #2’s Team Turtle). In Study #2, 60% 

of teams who used this strategy made progress on their particular problem (Table 7, row 1). Study #3’s Bob (who had 

no prior programming or web development experience) made progress on his iteration difficulties in the same way. 

Specifically, the logs showed that Bob used P6.ContextFree hints to compare different kinds of iteration, and explicit-

ly used the hints’ content (P1) and actionable suggestions (P3) to make progress on his loops. 
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7.3.2 Example: Issues with P2-Relevance 

Not all cases looked like Bob’s, of course. One issue that stood out was relevance to indifferent EUPs. In Section 

7.1, we pointed out the challenge for showing relevance for the hints that are about problem-solving concepts rather 

than code concepts—but in Cloud9, the code concepts’ hints also seemed to show relevance issues.   

For example, a 9
th
 grade male who we call “Bill” focused more on content creation with HTML and CSS than on 

JavaScript beyond its most basic bits, and rarely turned to the Idea Garden for these tasks—and with good reason, 

since the Idea Garden did not target those situations. Still, Bill did use JavaScript when he worked on implementing a 

map function that would go through an array of photos. Since Bill did not ask for much in-person help and did not 

collaborate much with other campers, we would have hoped that Bill would turn to the Idea Garden when he ran into 

difficulties at this stage of his JavaScript work.  

However, his first interaction with the Idea Garden was not helpful. As he reported on one of his end-of-day sur-

veys: “I tried looking at [the Idea Garden map hint] and it wasn't really useful.” Logs of his Idea Garden usage on this 

day show that Bill opened the map hint once, but did not interact with it (i.e., did not try to paste in the code example 

and edit it, did not expand the hint’s “click to see more” widget, etc.) and closed it shortly afterwards. 

 Bill’s usage of the Idea Garden in this example, in which he read an Idea Garden hint but did not act on the 

hint’s suggestions, is similar to the way some of Study #2’s teams acted when they used the Idea Garden (e.g., Study 

#2’s Team Beaver). In fact, Study #2, none of the teams who followed Bill’s “read and ignore” strategy progressed 

through the problem they were trying to solve (Table 7, row 2). Similarly, although Bill did complete a few of the 

assigned tasks, he had one of the lowest numbers of tasks completed of all of the campers. Although the map hint was 

almost certainly relevant to Bill’s attempts to iterate through his photo array, the hint seems to have failed to convey 

its relevance to Bill, since he decided it “wasn’t really useful” without even trying to act upon it. This example high-

lights both the importance of P2-Relevance and some of the difficulties encountered in achieving it.  
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7.3.3 Study #3’s Principled Results 

Table 10 presents a principle-by-principle view of some of Study #3’s results.  

Table 10: Study #3’s results for each principle.  

Principle Study #3 Examples and Results 

P1-Content Having multiple kinds of hints that illustrate ways to use the same concept (e.g., 

iteration) helped participants like Bob decide to use a map function 

P2-Relevance Relevance can be difficult to convey to indifferent EUPs (e.g., Bill), which can lead 

to users not progressing past barriers. Further, relevance was even more challenging 

to portray for problem-solving strategy hints than for concept hints 

P3-Actionable Actionability was similarly important in Study #3 as it had been in Study #2.  For 

example, Bob implemented a map function by following the Idea Garden’s actionable 

suggestions, and made progress by doing so 

P4-Personality N/A (not investigated in Study #3) 

P5-Information 

Processing 

(No results from Study #3’s data) 

P6-Availability The combination of P6.ContextSensitive and P6.ContextFree mattered in Study #3 

(similarly to Study #2).  For example, Bob used P6.ContextFree to compare different 

kinds of iteration hints to find the one he wanted to use 

P7-InterruptionStyle The negotiated interruption style used in Study #3’s implementation was sufficient to 

attract participants’ attention.  21/25 campers used the Idea Garden without any 

prompting from the helpers or instructors 

  

From a generalization perspective, we learned from Study #3 that the same principles used in Gidget-based Idea 

Garden generalized beyond Gidget to the Cloud9 IDE, to the JavaScript language, and to the new expanded scope of 

the hints.  The fact that 21/25 (84%) of campers found and used the Idea Garden without any explicit prompting from 

instructors shows the effectiveness of at least P6-Availability and P7-InterruptionStyle in this environment—because 

if those principles had failed, campers would not have been able to interact with the Idea Garden. Of the campers who 

did interact with the Idea Garden, 12/21 (57%) used it to make progress with their problems, as measured by end-of-

day survey responses and Cloud9 logging mechanisms. This number is very similar to the 53% who made progress 

using the Idea Garden in Study #2’s Table 9. This suggests that the Idea Garden’s effectiveness in Gidget generalized 

well to the Cloud9/JavaScript environment.   

8. GENERALIZED IDEA GARDEN ARCHITECTURE 

To enable other researchers to implement Idea Gardens in their own programming environments, we developed a 

generalized architecture. Our architecture builds upon earlier work [Cao et al. 2015] that proposed an architecture for 

the Idea Garden in CoScripter, but did not address the generalizability question. In this section, we take on the gener-

alizability question from an implementation perspective: Can Idea Gardens be ported from one environment to anoth-

er relatively easily, or must each be implemented entirely from scratch?  

To answer this question, we created the generalized architecture shown in Figure 9.  Figure 9 shows both the 

generalized architecture and its interactions with a host programming environment. Both the Gidget and Cloud9 Idea 

Gardens shown in this paper were implemented using this architecture. 
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Figure 9: Architecture of the Idea Garden. The black arrows represent the flow of data. User data (e.g., 
user’s code) flows from the end-user programming tool to the host-specific listener. That data is passed 

along to the controller, information processors, and actioner, and finally used to build the hints that are sent 
back to the host environment. The thick blue arrows represent inheritance, so the host-specific listener 

inherits from the abstract listener. The thin blue arrows point to examples, e.g., 2 points in blue to example 
code. 

To see how the pieces fit together, consider an example situation in which the Idea Garden responds to a user typ-

ing in some code that contains an anti-pattern. The following sequence numbers correspond to those in Figure 9: 

1. Suppose the user types the following JavaScript code into the Cloud9 host programming environment:   

   for (var x in arr) {f1(arr[0]);} 

2. The Host (Cloud9) reports this user code to the Listener.  

3. The Listener parses that code and finds a for loop that does not use its iterator variable (x in this case). The 

Listener recognizes this as an instance of the no-iterator anti-pattern, so it prepares an abstract event with type 

no-iterator to send off to the Controller. Along with this event, it sends the name of the unused variable, the 

name of the list from the for loop (arr) and the context in which it happened (such as: the line number, loca-

tion on the screen, the main code window’s contents, side preview windows, sets of menu buttons, etc.).  

4. The Controller delegates further translations of the data that it needs to additional Information Processors 
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plug-in’s, and then … 

5. … uses the results to map the input abstract event (no-iterator) to its corresponding abstract action 

(show_iteration_icon). 

6. The Controller then sends the abstract action (show_iteration_icon) and the user’s code to the Actioner.  

7. The Actioner delegates hint construction to the Hint Engine, which finds the relevant hint (the iteration hint), 

inserts the user’s code and variable names into the iteration hint’s code template, producing this customized ex-

ample code for the hint:  

  for (var x in arr) {console.log(arr[x]);} 

8. The Actioner receives the hint, and… 

9. … tells the Host environment (Cloud9) to decorate the line of code with an Idea Garden icon indicator   

that links to the above hint. 

 

The Listener plays a particularly important role in supporting many of the principles. First, it directly supports 

P1-Content by listening for anti-patterns and providing abstract events related to that content. The Listener also sup-

ports P2-Relevance by including the user’s code when sending abstract events to the Controller, so that the code can 

be included in hints. Finally, the Listener supports P6-Availablity and P7-InterruptionStyle by observing user actions 

without interfering with the actions of the user or environment, then notifying the user of a hint in context (P6) with a 

negotiated interruption style (P7).  

 The Controller and Information Processors map abstract events to abstract actions (see Table 11 for example 

pairs of abstract events and abstract actions). By mapping abstract events (such as anti-patterns) to abstract actions 

(such as decorating the screen with the ), the Controller notifies the Actioner to make Idea Garden hints available 

to the user in a certain context (P6). By passing along the context when the abstract event happens, the Idea Garden 

can include parts of that context to show users the relevance of hints (P2).  

 

Table 11: Pairs of abstract events and abstract actions, which are matched to each other by the controller. 

Abstract Events Abstract Actions 

user_needs_help_getting_started show_getting_started_hint 

no_iterator show_iteration_icon 

user_previewed_webpage highlight_evaluation_hints 

 

After the Controller matches an abstract event to an abstract action, the Host-Specific Actioner acts on the ab-

stract action. The Actioner provides the input context to the Host-Specific Hint Engine. The Hint Engine customizes 

the hint (e.g. by replacing parts of the code example with the user’s own variable and function names, supporting P2). 

The Hint Engine supports P5-InformationProcessing by containing parts of the hint within an expandable region. The 

Hint Engine supports P3-Actionable by requiring hints to include actionable instructions when implementers create 

the hints. As the user writes code, the Host-Specific Actioner updates the hints to include context-specific information 

(P2-Relevance). Finally, the Actioner finishes up the host-specific actions, decorating the screen with the  icon to 
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notify the user of a hint (supporting P7). 

 

9. CONCLUDING REMARKS  

In this paper, we have investigated the generalizability of the Idea Garden.  Our mechanisms for doing so were to 

(1) develop a set of general principles for the Idea Garden and evaluate them in multiple environments, (2) to develop 

a generalized architecture enabling Idea Gardens to at least conceptually “plug in” to environments willing to com-

municate user actions and receive communications for the interface, and evaluate its viability in multiple environ-

ments, and (3) to develop multiple types of support, covering both difficulties with programming concepts and diffi-

culties with problem-solving strategies. Table 12 summarizes the results of our investigation from a principled per-

spective.  

Table 12: Summary of principle-by-principle evaluations.  

Principle Ways Formative Evidence Summative  

Evidence 

P1-Content  +Study1 +Study2*, +Study3 

P2-Relevance 

P2-All -[Cao et al. 2012] +,-Study3 

P2.1-MyCode  +Study2* 

P2.2-MyState +Study1 +Study2* 

P2.3-MyRequirements +Study1  

P3-Actionable 
P3.1-ExplicitlyActionable  +Study2*, +Study3 

P3.2-ImplicitlyActionable  +Study2*, +Study3 

P4-Personality   +[Lee and Ko 2011] 

P5-InformProc  +[Meyers-Levy 1989] +Study2* 

P6-Availability 

P6.1-ContextFree +,-Study1 +Study2* 

+Study3 

P6.2-ContextSensitive +Study1 +Study2* 

P7-InterruptionStyle   +[Robertson et al. 2004], +Study3 

+: Principle was helpful, -: Principle was problematic.  

*: Teams progressed in the majority (>=50%) of their barriers with these Idea Garden principles 

One way to view these results is in how they tease apart what each principle adds to supporting a diversity of 

EUPs’ problem-solving situations. 

P1-Content: Teams’ successes across a variety of concepts (e.g., Table 8) serve to validate the concept aspect of 

P1; mini-patterns were especially involved in teams’ success rates with Coordination barriers.  Together, these aspects 

enabled the teams to overcome, without any in-person help, 41%-68% of the barriers they encountered across diverse 

barrier types. The content also generalized to the strategies aspect: Study #3’s results showed that, unlike the control 

group, the experiment group (supported in part by Idea Garden strategy hints) did not need to rely on in-person help 

for their successes. This suggests that following P1-Content is helpful with a diverse scope of problem-solving diffi-

culties, from conceptual barriers to strategies.  

P2-Relevance and P6-Availability, in working together to make available relevant, just-in-time hints, afforded 
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teams several different ways to use the  to make progress. This suggests that following P2-Relevance and P6-

Availability can help support diverse EUP problem-solving styles. 

P3-Actionable’s explicit vs. implicit approaches had different strengths. Teams tended to use explicitly actionable 

instructions (e.g., “Indent...”) to translate an idea into code, at the Bloom’s taxonomy “apply” stage. In contrast, teams 

seem to follow implicitly actionable instructions more conceptually and strategically (“recall how you...”), as with 

Bloom’s “analyze” stage. This suggests that the two aspects of P3-Actionable can help support EUPs’ learning across 

multiple cognitive process stages. 

P5-InformationProcessing: P5 requires supporting both the comprehensive and selective information processing 

styles, as per previous research on gender differences in information processing. The teams used both of these styles, 

mostly aligning by gender with the previous research. This suggests that following P5-InformationProcessing helps 

support diverse EUP information processing styles. 

P6-Availability and P7-InterruptionStyle: P6 requires making the Idea Garden available even when the context 

changes, and P7 requires supporting negotiated-style interruptions to allow users to initiate interactions with the Idea 

Garden on their own terms. The fact that almost all participants in both studies found and interacted with the Idea 

Garden in some way suggests that the pairing of P6-Availability and P7-InterruptionStyle succeeded in engaging 

EUPs in a diversity of contexts.  

 Taking the principles together, the studies presented in this paper show that Idea Gardens built according to these 

principles under our generalized architecture are very effective.  For example, Study #2 in Gidget showed the teams 

learned enough programming in only about 5 hours to begin building their own game levels comparable to those cre-

ated in a prior study of Gidget [Lee et al. 2014]. However, unlike the prior study, they accomplished these gains with 

significantly less in-person help than they required in an earlier study that did not have the Idea Garden. Study #3 in 

Cloud9 showed that participants were able to complete more self-initiated tasks and to rely less on in-person helpers. 

In fact, Study #2’s and Study #3’s success rates without in-person help were remarkably similar. 

Due to these gains in generalizability, the Idea Garden has now been implemented in multiple programming envi-

ronments for multiple languages. The first Idea Garden, built using the predecessor of the generalized architecture, 

was in CoScripter, a programming-by-demonstration language and IDE for web automations. We used the general-

ized architecture to implement an Idea Garden for Gidget, an imperative, object-based language in its own IDE, and 

used it again to implement an Idea Garden for JavaScript in Cloud9.   

These promising results suggest the effectiveness of the Idea Garden’s principles and support for different con-

texts in helping EUPs solve the programming problems that get them “stuck”—across a diversity of problems, infor-

mation processing and problem-solving styles, cognitive stages, tasks, host IDEs, programming languages, and peo-

ple.  
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Highlights 

 The Idea Garden, based on 7 principles, supports several dimensions of diversity 

 The Idea Garden helps stuck EUPs by providing just-in-time problem-solving support 

 Three separate environments have hosted versions of the Idea Garden  

 Each version was empirically evaluated for effectiveness 

 The Idea Garden can be ported to other environments via a generalized architecture 

 




