

End-user programmers on the loose:
A study of programming on the phone for the phone

Balaji Athreya, Faezeh Bahmani, Alex Diede, Chris Scaffidi
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331 USA

{ athreyab, bahmanif, diedea, scaffidc }@onid.orst.edu

Abstract—Microsoft TouchDevelop is a programming
environment enabling users use their phones to create scripts that
run on the mobile phones. This is achieved via a semi-structured
editor and a programming language with several distinctive
features, such as support for using smartphone hardware. In
order to uncover opportunities for future tool development aimed
at facilitating end-user programming of phones on phones, we
have investigated the kinds of scripts that people are creating
with the current tool set as well as what problems they ask for
help with solving. This paper is the first to study how end-user
programmers “in the wild” are programming mobile phones. In
particular, no previous study has investigated the ways in which
end users programmatically use mobile phones’ special hardware
(e.g., GPS, accelerometer, gyroscope) for practical everyday
purposes. We discovered that, in essence, people are using
TouchDevelop to create apps: downloadable applications with
small, fairly reliable feature sets that take advantage of mobile
hardware. In addition, we identified several areas for further
innovation aimed at enhancing the programming tool and the
online repository where users share scripts with one another.

Keywords—human-centric computing; end-user programming;
empirical studies; mobile computing

I. INTRODUCTION
If you could pull out your phone and program it to do

something, what would you program it to do?

Until the past year, this question would have been largely
hypothetical because there was no practical way for end users
to create programs on their phone. Instead, they generally had
to obtain a personal computer such as a laptop, install a large
suite of programming tools, write a program in a C-like
programming language (such as Objective-C, Java, C#,
JavaScript, etc.), configure the phone to work with the
development computer, and deploy the program to the phone
via USB or another cable. These tools, languages and
configuration steps posed extremely high barriers to end-user
programming of phones.

Microsoft TouchDevelop is a new programming
environment intended to greatly reduce these barriers so that
anyone can use a phone to program the phone [14]. For
example, a user could program her phone to send a text
message when she arrives at a certain destination (e.g., to
notify friends automatically when she arrives at a party).

Consequently, TouchDevelop is intended to let users customize
their phone’s behavior to provide real-time support for their
personal lives. In addition, the programming environment is
full-featured enough that users can create more sophisticated
scripts, such as games, and the environment includes an online
repository called the “bazaar” containing thousands of scripts
that users have posted for one another to reuse.

Because it opens up these numerous new programming
affordances in the rapidly-growing domain of mobile
computing, and because of its online bazaar of existing scripts,
TouchDevelop offers a valuable opportunity to investigate key
research questions whose answers could shape development
efforts aimed at providing phone users with even more refined
or more powerful programming tools. In order to guide future
work in this area, we have analyzed scripts in the bazaar, as
well as user comments on related online forums, to answer
three research questions:

RQ1. What kinds of scripts have users posted?
We are particularly interested in learning to what extent users
are creating scripts that take advantage of the distinctive
affordances of mobile phones, such as GPS and cameras. To
answer this question, we analyzed the existing scripts that users
have posted to the online TouchDevelop bazaar.

RQ2. How are TouchDevelop scripts changed over time?
Since our overall goal is to guide tool development, we
investigate how (and, implicitly, whether) people are using the
existing TouchDevelop tools to modify scripts. We explored
these issues by analyzing the modification logs of scripts in the
online TouchDevelop bazaar.

RQ3. What problems do users ask for help with solving?
The complaints and questions of existing users can provide a
valuable starting point for user-centered design of new and
improved tools. We uncovered user problems with
TouchDevelop by analyzing online forum discussions.

This paper is the first to study how end-user programmers
“in the wild” are programming mobile phones. In particular, no
previous study has investigated the ways in which end users
programmatically use mobile phones’ special hardware (e.g.,
GPS, accelerometer, gyroscope) for practical everyday
purposes. Our investigation revealed interesting surprises. For
example, the diversity of TouchDevelop programs was
particularly noteworthy. In addition, we found TouchDevelop

We thank Microsoft Research for sponsoring this work by providing phones.

has enabled users to create a wide diversity of programs that
leverage mobile phones’ unique affordances. These and other
results are described below, after we first review the related
work and summarize our research methods.

II. BACKGROUND: MICROSOFT TOUCHDEVELOP
TouchDevelop is a new programming environment

enabling end-user programmers to create scripts for their
Windows-based smartphones [14]. Most existing tools such as
Appcelerator Titanium [2] and Google/MIT App Inventor [7]
require people to use another computer such as a desktop or
laptop to create programs, which are then deployed to
smartphones. In contrast, TouchDevelop allows users to create
programs for the phone on the phone. A direct competitor for
Android is the Google Scripting Layer [6], though this
alternative does not include a large corpus of end-user
programs for us to study.

Figure 1a shows an example of a TouchDevelop script
provided by Microsoft as a training example. The code is
organized into functions called actions. Prior to the main()
action, a library for drawing a turtle is imported (not shown)
and bound to the variable t. This library is initialized, and its
turn() action is invoked within a loop. Custom actions,
spiral color() and draw triangle(), are defined
elsewhere (with a space in each action’s name) and are invoked
within the loop; these actions draw to the screen. The effect is
ultimately to draw a turtle that traces a spiral path outward
from the center of the screen.

The programming language has a few important features
and constraints, some of which are demonstrated by this script.

• The language is primarily textual but, like a visual
language, it uses a few non-ASCII graphical characters to

represent some elements of the syntax. For example, an
arrow indicates a dereference of an object member, an
arrow indicates a function/action invocation, and a
recycling symbol precedes a reference to bound library
object.

• Unlike most languages, the TouchDevelop language does
not allow user-defined types or custom user interface
controls (though these might become available in the
future). The available types consist of the usual primitives
(integers, string, etc) as well as a small set of types for
objects, many of which are singletons (i.e., predefined
instances of classes that cannot be further instantiated). The
language supports events, event handlers, and other user-
defined functions.

• It has native support for accessing all of the hardware
widely available on mobile phones, some of which is not
available on traditional desktop computers. For example,
support is included for accessing GPS, gyroscope,
accelerometer, camera, and microphone.

• The language includes support for storing truly global
variables—such variables are stored on the cloud and
accessible by programs on other phones.

Two significant challenges with programming on a phone
are the limited screen space and cumbersome virtual keyboard.
To overcome these challenges, the programming environment
is designed to require little scrolling through programs and
little textual input. This dual objective is accomplished by
providing a semi-structured editor for creating scripts.
Programmers select from a list of menu options, each of which
corresponds to a kind of statement that can be added to the
script. Once a statement is added to the script, then additional
menus are available for filling in the pieces of the statement
(Figure 1b). Thus, most of a script’s abstract syntax tree is

Figure 1a (left): Sample TouchDevelop script, which draws a spiral with a turtle at the end of the spiral; the invoked

actions (named “spiral color” and “draw triangle”) are custom functions for drawing images onto the screen.
Figure 1b (right): User selected a line of code for editing, which brings up a menu of code for referencing common APIs.

created through menu selections. The leaves and lower nodes
of the syntax tree (such as variable names and expressions) can
be edited using textual input. Programmers can edit a statement
by touching it.

The TouchDevelop bazaar enables users to post scripts for
one another to download. This repository appears to contain
thousands of scripts and have thousands of users, but the exact
size is not publicly disclosed. The bazaar also provides online
textual areas where programs can display output; for example,
the bazaar provides a “leaderboard” service so that games can
post information about high scores.

Microsoft has used TouchDevelop as a basis for two
research projects. One project was aimed at developing an
algorithm that can detect when scripts are clones of one another
so they can be clustered, in order to support a new search
engine that allows users to browse through results by cluster
[1]. In another research project, Microsoft has developed static
analysis algorithms for determining whether a script “leaks”
private information [16]. For example, this analysis can detect
if a script might read a user’s address book and post personal
contact data to the web. Such an algorithm could be used to
enhance the bazaar by analyzing uploaded scripts and issuing
warnings to users before they download scripts that pose
privacy risks.

Unlike in work, our focus is not on presenting particular
new features for the TouchDevelop environment, but rather on
exploring how TouchDevelop is used in practice: what kinds of
scripts users are creating, how those scripts change over time,
and what problems users ask for help with solving. This
information can be used to uncover interesting use cases and
opportunities for providing improved tools.

III. RELATED WORK
Ours is the first empirical investigation of scripts that end-

user programmers are creating for mobile phones. However,
there have been numerous prior empirical studies of the form,
“What do end-user programmers seek to create in solution
domain X, and what problems do they encounter?” These
include studies in the context of spreadsheets [4], mashups
[17], web and graphic design [10][12], web macros [3], and
animations [5], as well as population-specific studies of
teachers [15] and scientists [8][13]. Our study offers a chance
to explore whether findings of prior studies generalize to the
entirely new context of programming on the phone.

1) Findings related to kinds of programs created
Similar studies in other domains have uncovered numerous

surprises and other interesting findings. For example:

• Among web macros in the CoScripter repository, some of
most frequently-used were those for “mischievous”
purposes such as automatically playing online lotteries and
games [3].

• Users with high Technology Initiative (TI), as measured
with questions about early technology adoption, wanted to
create different kinds of mashups than users with low TI:
those with high TI mostly wanted to mash up data and
media, while those with low TI mostly wanted to create
mashups to support socializing with other people [17].

• Web designers create an huge variety of different page
behaviors: in one survey, 200 respondents reported needing
to create 107 distinct behaviors, ranging from “an animated
‘lens effect’ list UI” to “a sliding dock” [10].

• A study of the EUSES Spreadsheet Corpus found that the
majority of spreadsheets were used to store information
rather than to calculate [4]—serving as small databases,
rather than “programs” in the conventional sense.

• Most end-user animation programs in the repository for the
Scratch tool had no clear functional purpose at all [5]. The
majority of the others were games.

These and other studies illustrate that end-user
programmers often use tools in ways that do not conform with
our intentions or expectations. In our current study, we cannot
guess what people are doing with TouchDevelop. Given the
results of the studies above, TouchDevelop users might (for
example) be mischievously writing scripts that place prank
calls, creating scripts to socialize or to manipulate data,
creating scripts with surprisingly complex behavior, using
scripts to store and retrieve data without taking any real
advantage of mobile computing affordances, or perhaps writing
little of use at all.

2) Findings related to reuse
One finding that appears in several prior studies is the low

level of code reuse among end-user programmers via
repositories. One study found only 7% of web macros in a
repository were ever run more than 6 times [3]. Another study
found only 5% of Scratch animations were ever reused by
another person to create a new animation [5]. A study of web
page designers “found little evidence of code-scavenging”
between people [12]. At best, as with teachers in another study
[15], web page designers referred to other people’s code in
order to learn while creating new programs [12]. In contrast,
reuse was higher of one’s own code for graphic designers [10],
web page designers [12], and scientists [8].

Several problems inhibit reuse of end-user programmers’
code. First, compatibility problems plague some contexts, such
as data formatting problems that require manual fixing during
reuse [12]. Second, reuse may be inhibited when functions are
not implemented in a generalized way [13], such as due to
hardcoded values [12]. Third, reuse may be inhibited when few
useful programs are available for reuse [5]. Fourth, the absence
of commenting or other documentation impedes reuse, calling
for reverse engineering of code’s meaning (potentially with
retrofitting of documentation) during reuse [8][13][15].

Given these results, we expect that reuse via the
TouchDevelop bazaar might be low, but given the diversity of
obstacles to reuse in other contexts, it is difficult in advance to
know what problems might limit reuse of TouchDevelop
scripts or, equally importantly, what actions might be required
during reuse.

3) Other challenges to end-user programming
In addition to reuse-related problems, other challenges

plague end-user and novice programming, though these
problems varied in significance depending on context.

Web page designers often found it difficult to implement
complex behaviors because a single small bug could cause the

entire behavior to fail [10]. In contrast, an analysis of
animations found that only 7% contained noticeable bugs [5].
Spreadsheets seemed moderately difficult to code correctly,
with 25% or more of spreadsheets containing bugs in typical
studies [11].

Team-related problems appeared in some contexts. Web
page designers often worked in teams and depended on others
to provide materials as well as periodic assistance [10][12]. In
contrast, Scratch animation programmers showed little
evidence of working in teams or of depending on the user
community for help [5].

Finally, some programming environments appear to present
challenges with using and combining APIs. For example, this
was a problem with novice programmers learning to use Visual
Basic APIs [9]. In contrast, Scratch animation programmers
rarely asked for such help with APIs [5].

Our study offers an opportunity to see if TouchDevelop
programmers struggle with problems similar to or different
from these. Based on the results of our study, we will discuss
general conclusions that can be drawn from the foregoing
studies (above) and the present study.

IV. METHODOLOGICAL OVERVIEW
To obtain data for analysis, we downloaded randomly-

selected sets of programs or user comments from the web, with
one data set for each of our three research questions. In each
section below, we describe how many programs and user
comments we downloaded for answering the corresponding
research question.

We applied qualitative analysis to develop a coding scheme
based on the data rather than imposing an externally-
determined coding scheme. Our procedure was as follows:

1. One researcher examined approximately 10% of the data
and designed a categorization scheme, writing down coding
rules for how to recognize members of each category.

2. Two researchers then independently applied that coding
scheme to the dataset.

3. They compared their assignments and computed a
reliability metric. When codes were mutually exclusive, they
used Cohen’s Kappa and also computed the percent of data
items (scripts or user comments) where both researchers
assigned the same code. In cases when multiple codes could be
assigned, we used the Jaccard Coefficient.

4. Finally, the pair of researchers negotiated and resolved
discrepancies. Based on a negotiated code assignment, we
computed descriptive statistics to answer research questions.

The primary methodological limitation of this study
approach is that it does not provide direct observations of
people as they use the programming tool. Therefore, our study
design is appropriate for characterizing the kinds of programs
that people publish and the problems that they ask for help with
solving, but we cannot speculate on what kinds of programs
they are creating in private (i.e., not publishing to the bazaar),
nor on the extent to which users’ stated problems measurably
slow down or otherwise curtail their creation of scripts.

V. WHAT KINDS OF SCRIPTS HAVE USERS POSTED?
We analyzed 209 scripts from TouchDevelop’s bazaar and

discovered a total of 15 different program categories defined in
terms of primary functional purpose. We agreed on 87% of
assignments to these 15 categories (Cohen’s Kappa 0.85)
before negotiating and resolving discrepancies. Categories
were mutually exclusive—to our surprise, very few scripts
provided functionality corresponding to multiple categories,
and even then the functionality clearly was predominantly of
one specific category. For example, a few games provided a
means for users to post scores to Facebook or other online sites,
but the main functionality of the scripts were game-oriented,
and the social functionality was completely subordinate.

Overall, there were three groups of script categories:
fun/entertainment-related categories, non-entertaining utility
categories, and a category of “no meaningful functionality”
(NMF).

Approximately 38% of scripts fell into one of the
fun/entertainment-related categories (Figure 1). Within this
group of categories, the most commonly-occurring was Games
(Table 1). Examples included rock-paper-scissor and tic-tac-
toe. Such games were non-trivial but also not of the same
complexity as games typically available for purchase from
professional developers. Other scripts in the fun/entertainment-
related categories provided convenient access to music, images,
animation, or social activities.

In addition, we found 9 categories of non-entertainment
utilities with a surprising amount of diversity. The most
common of these were Web Lookup utilities, where the user
entered a query or other information that was posted to the web
to download other information that was then displayed.
Examples included scripts that retrieved the latest panoramic
image from the Bing.com homepage, and that retrieved the
next San Francisco BART train arrival time. We also observed
2 interesting Voice-Web Lookup scripts that collected the initial
query by voice and then looked up information on the web
(e.g., by posting voice queries to a public Wolfram Alpha API).

As an indication of the diversity in the non-entertainment
utilities, over 12% of all scripts clearly had some functionality
but did not fall into one of the other categories. Examples
included a program that could generate a random number when
requested, and another that allowed the user to set a timer for
an alarm.

Fun, 39%

Utility,
33%

NMF, 29%

Figure 2. Distribution of scripts (NMF = “no meaningful
functionality”). The Fun and Utility groups included
several specific categories (Table 1, below).

Many scripts in the non-entertainment utilities categories
did make use of hardware and operating system features that
are somewhat unique to mobile devices. For example, Location
scripts typically used the GPS, Phone Call scripts used the
microphone and the device’s ability to place phone calls,
Direction scripts used the built-in compass, Voice-Web Lookup
scripts used the microphone, and some Other Utilities used the
camera or microphone. In contrast, we did not notice many
scripts in the fun/entertainment-related categories that used
mobile functionality so extensively. Scripts in these categories
used the graphics, music, and image functionality that also is
available on traditional desktop computers. (The only

exceptions were a few Images and Social scripts that allowed
users to store a photograph with the camera.)

In addition to the fun/entertainment-related categories and
the non-entertainment utility categories, we identified a
category of scripts that had no meaningful functionality at all.
Nearly 30% of scripts fell into this category (NMF) Most were
of the “Hello World” variety. A handful were scripts that were
not even correctly composed as executable code, though as a
general rule, the scripts in this category actually ran but did not
accomplish anything significant. We cannot speculate why
users posted these scripts, whether intentionally (e.g., perhaps
as a form of learning activity) or unintentionally (e.g., possibly
due to confusion with the tool’s user interface).

VI. HOW ARE TOUCHDEVELOP SCRIPTS CHANGED OVER TIME?
We randomly downloaded scripts and, for each, checked to

see whether it contained a reference to a “parent” script,
indicating that it was an edited version of an earlier script. We
continued downloading until 100 such scripts were found.

Overall, we found a low level of reuse: We found that we
had to download 1965 scripts to obtain 100 that had a parent,
indicating an approximate whitebox reuse rate of 5%.

We categorized edits based on their apparent effect,
revealing 12 categories (Table 2). Categorizing was relatively
easy to accomplish because the bazaar provides a feature for
directly viewing which lines of code had been modified from
one version to another. In some cases, an edit could be placed
into more than one category because the edit had more than one
effect. The Jaccard Coefficient of our coding was 0.93.

We found that most functionality-related edits did not
contribute substantive new features. Most of these edits were
minor tweaks to existing functionality that had the effect to
Format Output differently (18%), to Add Output by generating
more output information at a point in the code where output
was already being generated (12%), to Modify Functionality by
tweaking the behavior of an existing feature (11%), to Remove
Functionality by deleting or commenting out code (7%), or to
Fix Functionality (2%).

For example, many of the Format Output edits consisted of
changes in the prompts shown to users (e.g., from “This is the
message” to “Write message to speak”), changes to other
output strings displayed to users, or changes to lines or other
graphical shapes shown on screen. An example of a more
substantive Modify Functionality edit was made to a script that
plays a series of songs. This edit changed the order in which
songs played and changed the specific user gesture event (a
phone rotation) that could be used to advance to the next song.

In the end, we found that only 26% of edits actually had the
effect to Add Functionality in the sense of contributing an
identifiable new feature to the script. For example, two edits
changed their respective scripts so that they posted game high
scores to the leaderboard service of the bazaar. Another edit
added a feature for retrieving a comic strip image and resizing
it to fit properly on the screen. Another example enhanced an
alarm script to add a feature so the user could select what song
should play when the timer went off.

Table 1. Scripts of TouchDevelop users, based on primary
area of functionality (mutually-exclusive categories)

Category Definition {Example} %

Categories related to fun/entertainment

39

Game
Pose challenge for user to finish
{Generate a random number that the user
must guess}

11

Music
Access/play/manipulate music files
{On phone face-down event, play the next
song in a play list}

10

Images Capture/display/manipulate image
{Resize and display existing image} 7

Animation
Create animation using text, shapes
{Rectangle animates on the screen as the
user drags finger around}

6

Social Post via Facebook/Twitter/SMS/email
{Post name of song to FaceBook} 6

Categories related to non-entertainment utilities

33

Web Lookup Post-search-fetch content on the web
{Download timetable for local railway} 6

Scientific Calculation for physics/chemistry/math
{Calculate muzzle energy of projectile} 5

Location
Search/locate a place on a map
{Display map based on an address in the
contact list}

3

Phone Call Call a phone number
{Place call using a calling card} 2

Network Config
View/manipulate network settings
{Display type of network to which the
device is connected}

2

Direction Find direction (orientation)
{Buzz whenever user turns north} 1

Voice-Web Lookup
Speech-driven information retrieval
{Siri-like app: user asks question, and
program provides information in reply}

1

Tutorial Teaches about TouchDevelop/API
{Show videos from TouchDevelop site} 1

Other Utilities
Automate other single tasks or multiple
tasks (series of operations)
{Test if all hardware functions—camera,
microphone, network—are fine}

13

Category for other scripts with no clear purpose

29

NMF No meaningful function
{Output “TouchDevelop is cool”, then end} 29

On a positive note, across different categories, we noticed
that very few edits were related to bugs. In particular, only 2%
of the edits had the effect to Fix Functionality, and another 2%
to Add Exception Handler. We found that 4% of the edits
caused Bug Insertion. For example, one edit entirely deleted
the actions in the script; other examples were edits that created
scripts that were no longer syntactically valid.

The remaining edits that had any functional effect were to
Clean Code (9%), to Add Documentation (9%) and/or to Credit
Others (3%). For example, one Clean Code edit replaced
statically hardcoded date values (that appeared to work
properly) with API calls to compute date values dynamically,
so that the script would continue working into the future. The
Add Documentation edits generally added comments
explaining the intent of the code. For example, one edit added a
comment to explain the user interaction: .
 “// Turn your phone in landscape to the right --> next song”

In addition to all of the edits above that accomplished some
effect in the code, we found that a non-trivial fraction of edits
had no effect at all (18%). These included adding whitespace
lines to the code, deleting comments, adding actions that had
no body, and adding actions that were never invoked or
otherwise referenced. It is impossible to speculate on the
purpose of these edits or whether they were even intentional at
all—as with NMF scripts, it is possible that users accidentally
posted NMC edits to the bazaar without intending to do so.

VII. WHAT PROBLEMS DO USERS ASK FOR HELP WITH SOLVING?
We looked for sources of TouchDevelop user comments by

using Google to search for websites that contained the word
“TouchDevelop.” We painstakingly iterated through search
results to find sites where TouchDevelop users appeared to be
posting requests for help. We identified several sites: the
TouchDevelop Facebook Wall, MSDN, the xda-developers
forum, and the TouchDevelop Forum. Each of these sites has a
threaded structure, where each web page contains multiple
discussions, and each discussion has a first post that receives
responses. We iterated through search results one page at a
time until we had collected at least 100 (119, specifically). We
only included discussions initiated by a post that presented a
problem of some sort.

We then analyzed the posts that initiated these discussions
to develop and apply a categorization scheme. Overall, we
found 19 mutually exclusive categories, which fell into three
groups: suggestions, questions, and bug reports (Table 3). After
categorizing, we compared results. We found our results to be
86% consistent (Cohen’s Kappa 0.85).

One common refrain of user comments was about APIs.
Examples appeared in several categories, including API
Suggestions (14%), Documentation Suggestions (3%),
Existence Questions (8%), How-To Questions (7%), and
Documentation Questions (7%) and API Bug Reports (8%).
These included comments such as, “Any chance of adding An
API to collect position with high accuracy in the future”,
“support of basic UI controls (buttons, sliders,toggle,color pick
etc)”, “expand API calls to settings like vibrate/ringer on/off”,
and “you can alter elements in a string collection. Any chance
of the same for xml”. No specific API suggestion, question, or
bug report seemed to dominate or stand out as particularly
common: requests were diverse and generally non-overlapping.

Although other studies have highlighted the difficulty that
programmers encounter with finding and coordinating APIs
when creating programs [9], an interesting issue in the
TouchDevelop context was that users also seemed to struggle
just as much with finding and combining features. Examples

Table 2. Edits performed by users, categorized according to
effect on the script (non-mutually exclusive categories)

Category Definition {Example} %

Categories related to functionality

Add Functionality Create new feature (other than just
adding or formatting output)
{Music player script has code added to
shuffle when the phone is shaken}

26

Format Output Only change is how output is formatted
{ print(x); becomes print("Number is: " + x);} 18

Add Output The only change is more data is output
{A script gets song title and posts to web.
The script is changed to display an image
as well as song title on wall}

12

Modify Functionality Change existing feature (other than
just adding or formatting output, or
adding exception handling)
{Feature for resuming a song on phone
rotation, is changed to pausing the song}

11

Remove
Functionality

Eliminate feature
{A 'save' action and all references to it are
removed}

7

Fix Functionality Correct malfunctioning feature (other
than just adding exception handling)
{Turning phone to portrait does not pause
song; code fixed so it pauses properly}

2

Other categories
Clean Code Script changed to simplify code, often

removing unnecessary code
{Lines that are repeated in separate
sections of the script are put into a new
function that is called instead}

9

Add Documentation Comments are added to make purpose
of script more clear
{Comments are added to metadata saying
how to use the script}

9

Bug Insertion User publishes script where a feature
clearly no longer works properly
{Modified script has syntax errors when
original does not}

4

Credit Others Script modified to give credit to others
{Insert comment in start of a function to
indicate where code was copied from}

3

Add Exception
Handling

Code added to deal with runtime errors
{Insert a conditional to check if a variable
is_invalid() before dereferencing properties}

2

NMC No meaningful change
{Function with no content is added} 18

Table 3. TouchDevelop problems that users ask for help
with solving (mutually-exclusive categories)

Category Definition {Example} %

Categories related to suggestions

39

API
Suggestions

Expand existing API or add new API
{“Access the file system in [version] 2.6”} 14

Feature
Suggestions

Add new tool feature
{“Run two scripts at the same time”} 8

User Interface
Suggestions

Suggestions for tool user interface
{“Remove TD logo from pinned script's tile”} 4

Documentation
Suggestions

For documentation on specific subjects
{“A tutorial on using the senses API”} 3

Localization
Suggestions

For other languages other than English
{“Wish there was a German language
version”}

1

Other
Suggestions

Suggestions not in categories above
{“To see TouchDevelop be open-sourced”} 8

Categories related to questions

39

Existence
Questions

About if an API or feature exists
{“Is it possible to export my scripts to run as
WP7 applications?”}

8

How-To
Questions

About how to do something with an API
or feature
{“How do I access the script downloads?”}

7

API
Questions

About specific (known) APIs
{“About Picture Collection why can’t I add or
delete element?”}

7

Documentation
Questions

About the documentation
{“Where did the video tutorials go?”} 7

Repository
Questions

About repository or its scripts in
general
{“Are there any known problems with
downloading scripts?”}

3

User Interface
Questions

About specific (known) features in user
interface
{“Problem with finding the ‘rename’ button
… in touchdevelop 2.4”}

2

Phone
Questions

About phone (not TouchDevelop)
{“Change … phone lock screen”} 2

Syntax
Questions

About syntax of TouchDevelop scripts
{“Is code a reserved word now?”} 1

Other
Questions

Questions not in categories above
{“Are TouchDevelop scripts the same as
WP7 applications?”}

3

Categories for bug reports/complaints

23

Tool
Bug Reports

About programming tool
{“I cannot download TouchDevelop.”} 12

API
Bug Reports

About a specific API
{“The string trim function is cutting off
characters that it shouldn't be”}

8

Repository
Bug Reports

About publishing a script
{“When I try to publish my script I get this
error code...”}

2

Other
Complaint

Other complaint (not specific bug
related to TouchDevelop)
{“There are not enough applications in the
[Windows] Marketplace!”}

1

 appeared in Feature Suggestions (8%), User Interface
Suggestions (4%), Documentation Suggestions (3%), Existence
Questions (8%), How-To Questions (7%), Documentation
Questions (7%), and User Interface Questions (2%).

Most feature-oriented comments touched on difficulties
with finding existing features in menus or other parts of the
programming tool. For example, these comments described a
“problem with finding the ‘rename’ button to rename a variable
in touchdevelop 2.4”, a “problem with finding an option named
‘Folders’ in the menu at the bottom after 7.5/Mango update [to
the Windows mobile operating system]”, and a “problem
finding available events and action types which control the
media volume”. Problems with finding TouchDevelop APIs are
to a certain extent also feature-related problems in this
environment (i.e., associated with the programming tool), since
code to invoke many APIs is inserted into a script via menu
commands (as shown in Figure 1b).

Other feature-oriented comments focused on features that
users needed but that were missing. Specifically, three Feature
Suggestions requested the ability to run multiple scripts
simultaneously; one of these stated, “allowing the simultaneous
execution of two TD apps(such as photoframe & timer) should
be possible”. Five users wanted the ability to compile for other
platforms, including iOS, Android, Windows 7, and web
browsers. Finally, two users wanted the ability to add custom
types and user interface controls and widgets.

Overall, the API- and feature-related categories above
accounted for approximately two-thirds of all comments.

After APIs and features, the next most common concern
was compatibility. This concern appeared in two forms. First,
almost all Tool Bug Report comments (12%) covered apparent
tool-phone compatibility problems (or perhaps configuration
problems) that occurred during installation. These bug reports
generally provided detailed information about the problem
encountered. Examples included “I can not install it on my
HD7 in Greece with firmware 4.05.401.02” and “Ive got a
problem download this app in Zune marketplace. whenever i
want to download it Zune shows me this error: C00D11CD.”
Second, other comments discussed compatibility problems that
users encountered when a script worked on one phone but not
on the repository or another phone. Such comments appeared
in the Tool Bug Report and the Repository Bug Report (3%)
categories. For example, one user wrote, “Yesterday I uplouded
my new digit clock script. For the time being nothing special
but now the upload says it has errors! But when i look at my
script, which is installed on my phone, to look after the error,
there are none.” Approximately 14% of comments were related
to compatibility of one kind or the other.

VIII. DISCUSSION
Now that users can pull out and program their phones, what

programs are they creating?

In a word: apps. There are many noteworthy similarities
between the TouchDevelop scripts that we observed and the
apps that we have been using on our smartphones and other
mobile devices for several years. Like many apps, scripts
provided a small set of features, which were implemented fairly

reliably, with few obvious bugs. Like many apps, they were
free and available for download on demand. Like apps, many
of them took advantage of mobile hardware. In short, Microsoft
apparently has succeeded in providing an environment where
users have created simple apps.

While this overall result is encouraging, our results
highlight several areas for further innovation. Below, we
describe three areas of opportunity informed by our empirical
results interpreted in the light of related work.

A. One-third of scripts had no apparent functional purpose
As in a prior study of animation programs [5], a non-trivial

proportion of TouchDevelop scripts had no apparent functional
purpose. The key methodological limitation of the study is the
lack of direct observations of people programming, so we
cannot speculate on the motivations for why people created
these scripts. Even though we found few bugs in any programs,
it is hard to see why these scripts with no obvious function
would be useful to other people, and Future work could include
interviews of TouchDevelop users to investigate their
motivations. From other users’ standpoint, such scripts might
just be distracting from valuable scripts on the repository, so
future work might also enhance the repository in ways that help
users to find and focus on what they consider truly useful.

B. The code reuse rate was extremely low (5%)
As in earlier studies [3][5][12], we found that very few

TouchDevelop scripts were reused to create and publish a new
script. Moreover, few edits actually added any new features.
Research has suggested that code reuse may be inhibited when
compatibility problems interfere [12], when functions are not
implemented in a generalized way [12][13], when reusable
code is mixed in a repository cluttered with less-useful code
[5], or when code lacks comments and documentation [8][13]
[15]. Each of these issues is consistent with our observations
and could explain some of the low reuse that we observed and
motivate new innovations, such as repository enhancements.

A distinctive challenge in the TouchDevelop context,
however, is the extremely broad variety of scripts that users
have created, which were more diverse than what we observed
in some other environments. In other studies, at least we could
create categories for all of the programs we observed (e.g.,
[4][5]). In the current study, many categories had only a few
scripts, and 12% of scripts essentially required categories of
their own in terms of functional purpose.

Thus, few users might benefit from extending any given
script—and, conversely, any given script in the bazaar might be
of interest to a vanishingly small proportion of the overall
community. Yet the current bazaar, as with most repositories, is
designed around the assumption that if a script is posted, then a
significant number of other people might benefit from reusing
it. Our results lead us to suspect that this assumption is not true
in the case of TouchDevelop. Therefore, new approaches might
be needed besides the existing bazaar search engine for helping
users to benefit from existing code, enabling them to take
advantage of these existing resources (e.g., in ways other than
wholesale reuse of entire scripts).

C. Users call for more APIs, features, and platform support
Users’ comments indicate they want more APIs for

programs that they seek to create. The most common feature
requested was support for deploying scripts on other phone
operating systems or even on Windows 7 desktop, indicating
that TouchDevelop could potentially be valued as a general-
purpose programming environment. Comparing TouchDevelop
user comments to those in other tool forums would reveal
whether this demand for more features is unique to
TouchDevelop or instead typical of users at a certain point in a
programming tool’s adoption.

Meeting these API, feature and platform requests would be
difficult. Compatibility issues are already a problem and would
only worsen on multiple platforms. Moreover, given the
variation in mobile hardware and operating system capabilities,
new TouchDevelop APIs or API variants might need to be
supported on different phones, on top of the diversity of APIs
that users are already suggesting. Additionally, some users
have asked for help with finding APIs and features in the tiny
mobile programming tool, which might become even more
cluttered. Other environments such as Excel illustrate the
confusion that users can experience when a programming tool
gradually accumulates features [4]. Avoiding such confusion
while still presenting new features and APIs will be crucial for
ensuring that users obtain maximal benefit from programming
on the phone for the phone.

REFERENCES
[1] Akhin, M, Tillmann, N, Fahndrich, M, de Halleux, J, Moskal, M. (2011)

Code Similarity in TouchDevelop: Harnessing Clones, Technical Report
MSR-TR-2011-103, Microsoft Research.

[2] Appcelerator (2012). Titanium Studio. www.appcelerator.com
[3] Bogart, C, Burnett, M, Cypher, A, Scaffidi, C. (2008) End-user programming

in the wild: A field study of CoScripter scripts. VL/HCC, 39-46.
[4] Chambers, C, Scaffidi, C. (2010) Struggling to excel: A field study of

challenges faced by spreadsheet users. VL/HCC, 187-194.
[5] Dahotre, A, Zhang, Y, Scaffidi, C. (2010) A qualitative study of animation

programming in the wild. ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, 1-10.

[6] Google. (2012) Scripting Layer for Android.
http://code.google.com/p/android-scripting/

[7] Google and MIT. (2012) App Inventor for Android.
http://appinventor.mit.edu/

[8] Jones, M, Scaffidi, C. (2011) Obstacles and opportunities with using visual
and domain-specific languages in scientific programming. VL/HCC, 9-16.

[9] Ko, A, Myers, B, Aung, H. (2004) Six learning barriers in end-user
programming systems. VL/HCC, 199-206.

[10] Myers, B, Park, S, Nakano, Y, Mueller, G, Ko, A. (2008) How designers
design and program interactive behaviors. VL/HCC, 177-184.

[11] Panko, R. (1998) What we know about spreadsheet errors. Journal of
Organizational and End User Computing (JOEUC). 10, 2, 15-21.

[12] Rosson, M, Ballin, J, Nash, H. (2004) Everyday programming: Challenges
and opportunities for informal web development. VL/HCC, 123-130.

[13] Segal, J. (2004) Professional End User Developers and Software
Development Knowledge, Technical Report 2004 / 25, Department of
Computing, Open University, Milton Keynes, UK.

[14] Tillmann, N, Moskal, M, de Halleux, J, Fahndrich, M. (2011) TouchDevelop:
Programming cloud-connected mobile devices via touchscreen. Symp on New
Ideas, New Paradigms, Reflections on Programming and Software, 49-60.

[15] Wiedenbeck, S. (2005) Facilitators and inhibitors of end-user development by
teachers in a school. VL/HCC, 215-222.

[16] Xiao, X, Tillmann, N, Fahndrich, M, de Halleux, J, Moskal, M. (2011)
Transparent Privacy Control Via Static Information Flow Analysis,
Technical Report MSR-TR-2011-93, Microsoft Research.

[17] Zang, N, Rosson, M. (2008) What’s in a mashup? And why?: Studying the
perceptions of web-active end users. VL/HCC, 31-38.

